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This is a demonstration of the ongoing effort to document and improve understanding and promote good usage of the
RooFit, RooStats and HistFactory statistical tools, primarily for usage in High Energy Particle physics at the LHC.
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CHAPTER 1

Introduction

The goal of particle physics is to answer fundamental physics questions, such as “Does the Standard Model Higgs
boson exist?”, “What is the production cross-section of top-quark pair production?” or “What is the mass of the Higgs
boson? To answer these questions statistical tests are constructed as part of the experimental procedure, which result
in probabilistic statements on the theory or the observed data.

The goal of these statements is to allow us to come to a decision whether to accept a new theory as worthy of being
true, i.e. that it should become physics text books, or should be listed in the Particle Data Book.

1.1 Overview

All experimental particle physics results start with the formulation of a physics theory. Examples of such theories are
the Standard Model with a Higgs boson, or supersymmetric extensions of the SM. Once a theory of interest is chosen,
an experimental measurement procedure is designed that can be used to to test the theory, or to measure one or more
parameters of it. In practice this means that we exploit a software chain of physics simulation software, showering
Monte Carlo generators, detector simulation software, detector reconstruction and dedicated analysis tools to reduce a
preductions of physics theory to a statistical model for one or more effective observables .
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A statistical model, or probability model, is mathematical function that assigns a probability p to every possible
observable outcome & of an experiment, under the assumption that a particular hypothesis is true. Once you have
such a statistical model of your experiment, all physics knowledge has been abstracted into the model and all further
inference on the theory, or its parameters, is purely procedural and uniquely defined given an unambiguous formulation
of the type of statement desired'.
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These remaining steps, evaluating the statistical model for the observed data and summarizing the outcome of the
evaluation in a convenient form for further interpretation, then result in familiar statements like “The cross-section of
squark production is less than 0.3 pb:math:*{-1} at 95% confidence Level”, “The probability to observed this signal, or
more extreme, under hypothesis of no Higgs boson is less than 1.5 - 1078, or “The top quark mass has been measured
to be 172 + 0.9 GeV”.

In this document several practical aspects of the building of statistical models, as well as the most commonly used
statistical inference procedures based on these models are discussed, starting with very simply models and gradually
increasing the complexity to include the level of detail found in modern particle physics analyses.

! At this point, given the probability model and well defined statement on the type of inference desired, you could pass the remaining calculations
to a friendly statistician, or more realistically a software package, that has no physics knowledge.

4 Chapter 1. Introduction



CHAPTER 2

Statistical Tests

2.1 simple hypotheses for counting data

“What do we mean with probabilities?

The central concept in all statistic inference is the probability model, which assigns a probability to each possible
outcome of an experiment. A well known and simple example in particle physics is the Poisson model, describing the
outcome of a counting experiment,

pNe t
N1

P(N|u) =

defining the probability for an observation of IV counts for a random process measured in a fixed time interval, where
1 events are expected on average. Poisson distributions describe a multitude of physics processes including radiactive
decay and any particle physics counting experiment that analyses data taken in a fixed time interval. As the Poisson
describes the distribution of possible outcomes of counting analysis with any type of event selection, independent
on the complexity of the selection, it is by far the most common statistical model in particle physics. Given an
expected event count ' the Poisson distribution fully specifies the probability of each possible outcome of a counting
experiment.

2.1.1 A counting experiment example

For a given hypothetical physics measurement in which, on average, 3 background events and 4 signal events are
expected, Figure shows the Poisson probability distributions for the background-only hypothesis (x = 3) and the
signal-plus-background hypothesis (1 = 7). Note that the probabilities assigned by each Poisson model are strictly
speaking conditional on the assumed hypothesis: suppose we observe 7 counts in our experiment, then the probability
for that outcome depends on the assumed hypothesis (background-only, or signal-plus-background).

L(N|kug) = 0.0QQ(/J = 3)
L(N|Hsig4bkg) = 0.149(p = 7)

! which of course will depend on details of the event selection criteria
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The probability of the observed data under a given hypothesis, P(data|H ) as shown above, is called the Likelihood and
conventionally denoted with the symbol L. The observation N = 7 is thus more likely under the S + B hypothesis
than under the B hypothesis. But is this what we want to know? Or would we rather know P(H;|N = 7), the
probability of each hypothesis given the observation of 7 counts? It turns out we don’t have enough information to
calculate P(H;|N = 7) from L(N = 7|H;). The relation between probabilities with inverted conditionalities is given
by Bayes theorem

P(H)
P(data)’
Thus we need to know the probabilities P(H ) and P(data) to be able to calculate P(H;|N = 7) from L(N = 7|H;).

Here, P(data) is the probability of the data under any hypothesis. If only two hypotheses are considered, as is done
here, then P(data) can be expressed as

P(H|data) = L(data|H) -

P(data) = L(data|Hsyp) - P(Hs+p) + L(data|Hg) - P(Hg)

applying to law of total probability. Inserting Eq.tprob in Eq.bayes1 gives

(data|H5+B) . P(Hs+B) + L(data|HB) . P(HB)’

P(H;|data) = T

where 7 can be B or S + B. To be able to answer the question on what the value of P(H;|N = 7) is, the question
of what the probabilities P(H;) are then remains: these are the probabilities assigned to either hypothesis prior to the
experiment. These prior probabilities can be based on earlier measurements, or can generically be considered to be a
prior belief in the theory. Suppose our prior belief in Hs 5 and Hp is equal, i.e. P(Hsyp) = P(Hp) = 0.5, we can
then calculate

L(N =7|Hg,p)  P(Hs\ ) B 0.148 - 0.50
L(N =7|Hg,p)  P(Hs1p) + L(N = 7|Hp) - P(Hg) _ 0.149-0.50 + 0.022 - 0.5

P(Hgyp|N=17) = = 0.87.
Thus the observation N = 7 strengthens the belief in the H g p hypothesis from 0.50 to 0.87, at the expense of the
belief in the H p hypothesis, which is reduced to 0.13.

2.1.2 The interpretation of probabilities

In the discussion so far probabilities assigned to experimental outcomes and to theories have both been used, even
though they are conceptually different. Probabilities of observed data can always be interpreted as the fraction of
outcome in repeated future experiment, i.e. P(N = 7|Hgyp) = 0.14 is interpreted as “in 14% of all future repeated
identical experiments we expect the outcome N = 7. This frequency-based interpretation of probability is the basis
of the classical, or frequentist school of statistics. In the frequentist framework no probabilities can be assigned to
theories as there is no concept of repetition for hypotheses. The Bayesian school of statistics on the other hand defines
probabilities as a degree of belief, that can also be assigned to hypotheses. As the Bayesian definition of probability
no rule-based definition as the frequentist notion does, the probabilities are inherently subjective, although there is
large effort in the statistical community to define rule-based prior probabilities that aim to reduce subjective aspects of
Bayesian inference.

The different notions of probability are reflected in the type of statements that are made in statistical inference. In the
frequentist framework constants of natures are fixed (the Higgs boson either exists or it doesn’t), and no probabilities
can be assigned to these. Frequentist statements are thus restricted to probabilities on data. In the Bayesian frame-
work probabilities are assigned to constants of nature (the top quark mass has a 68% probability to be in the interval
172.240.7 GeV). As the ultimate goal of any experiment is to make statements on a theory, the choice of the Bayesian
of Frequentist framework is largely on the decision at what level to communicate the (numeric) experimental results
that form the basis of decision. In the frequentist paradigm probabilities of data are communicated with an objective
definition, that can be used for further (subjective) decision making in a later stafe. In the Bayesian paradigm, prior
probabilities are inevitable included in the communicated numeric result, and thus communicate a message that con-
tains more (subjective) information than the pure result of the experiment, and give more guidance on the conclusions
that should be drawn from the data.

6 Chapter 2. Statistical Tests
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In this context it is intructive to compare the formulation of evidence for discovery of a new particle in both frame-
works. In the Bayesian framework evidence for a hypothesis is case as an odds ratio. The ratio of probabilities prior
to the experiment defines the prior odds ratio

P(Hsyp) _ _P(Hs.B)
P(Hp) 1 - P(HsyB)

Oprior -

The posterior odds ratio is defined as the ratio of posterior probabilities, calculated using Eq ref bayes1, where the
denominators cancel in the ratio,

L(data|Hsyp)P(Hs+p) L(data|Hgip)

o osterior — -
post L(data|Hg)P(Hp) L(data|Hp)

: Oprior .

The posterior odds ratio can be factorized as the prior odds ratio multiplied with the so-called Bayes factor that contains
the experimental information, as shown above. For example, for equal prior odds and an observation L(data|Hpg) =
107 and L(data|Hs,g) = 0.5 the posterior odds ratio becomes 2.000.000:1 in favor of the S+B hypothesis.

In the frequentist paradigm we restrict ourselves to a statement the probability of the observed data, L(data|Hp) =
1077 and L(data|Hg, ) = 0.5 and no notion of prior probabilities on the hypotheses exists, and it is these numbers
that constitute final numeric statement. Traditionally, the conclusion that hypothesis B is ruled out is based on the
observation of a very small value of P(data|Hpg) and a not-so-small value of P(data|Hg ), and that therefore
the signal in the S+B hypothesis is considered ‘discovered’. No formal rules exist to define a discovery threshold,
but probality of less than 2.87 - 10~7, corresponding to the probability of a > 50 fluctuation of a unit Gaussian, is
traditional considered the threshold for discovery.

In the discussion of discovery threshold one should keep in mind that the probabilistic statement is often only one of
the ingredients in the declaration of a discovery: For example for the Higgs boson discovery a 50 observation was
accepted as sufficient evidence, given that the underlying theory was well accepted, whereas much stronger statistical
evidence for superluminuous neutrinos was rejected (in retrospect rightfully so), on the basis that they underlying
theory was highly implausible, and that a mistake in the experimental analysis was more plausible.

The choice for a Bayesian or Frequentist interpretation of probabilities has a history of long-running discussion in
particle physics. Nowadays most particle physics results are reported in the frequentist paradigm, whereas most other
science displines use the Bayesian framework. The bulk of this lecture will focus on the construction of likelihood
models, which form the basis of both methods. In the discussion of statistical inference methods frequentist methods
are discussed in most detail, with the motivation that these are most relevent for todays particle physics students, while
highlighting salient differences with Bayesian techniques when applicable.

2.2 simple hypotheses for distributions

“p-values”

Most particle physics analyses are not simple counting experiments, but study one or more observable distributions
that allow to discriminate signal and background.

2.2.1 Probability models for distributions

To deal with distribution in statistic inferences, we must first construct a probability model for distributions. In some
cases, the distributions for observable quantities can be derived from the physics theory from first principles, resulting
in analytically formulated distributions. In most cases in todays experiments, and in particular at the LHC, predicted
distributions for observable quantities are derived from a chain of physics and detector simulations. The output of
such simulations is histogram of simulated in events in the observable quantity. An example of such an MC simulation
prodiction for a fictious signal and background process is shown in Figures binnedPdf.

2.2. simple hypotheses for distributions 7
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While the histograms with simulated signal and background events effectively describe a distribution, the statistical
model for such a binned distribution is effectively a series of counting experiments that can be described with a Poisson
distribution for each bin

L(N|Hg) = ] I Poisson (Vi)

L(N|HS+B) = HPOiSSOH(Ni|§i + Bl),
where b; and 3, are the predicted event counts for the background and signal process in bin ¢ respectively.

2.2.2 Statistical inferences with probability models for distributions

How does the fact that observation is a distribution change statistical inference? In the Bayesian paradigm, the likeli-
hoods of Eq ref La, ref Lb can simply be plugged into Eq ref bayes2, and all further statistical inference procedures
are unchanged. The frequentist calculation of L(]\_f | Hp) also remains unchanged, but raises the question if the proba-
bility of the observed data is still relevant when drawing conclusions on the hypotheses considered: L(N' |Hp) is the
probability to observe the precise (binned) distribution of data that was recorded. That is usually not what we are
interested in. We are interested in the probability to observe this, or any ‘similar’ dataset, e.g. with a few statistical
fluctuations w.r.t to the observed data that correspond to the same signal event count, or larger. To introduce a precise,
unambiguous notion, of what ‘more signal’ (or more generically ‘more extreme’ in any sense) means in the context of
statistical inference, a fest statistic is introduced in frequentist inference.

2.2.3 Ordering results by extremity, test statistics and p-values

A test statistic is, generically speaking, any function T'(x) of the observable data x. The goal of a test statistic is that
it orders all possible observations = by extremity: T'(x) > T'(z') means that the observation x is more extreme than
observation z’. For example, for a Poisson counting experiment, the trivial choice T'(x) = « defines a useful test
statistic that orders all possible observation by extremity as more observed events means more signal for a counting
experiment. With the notion of ordering possible outcomes by extremity, comes the concept of p-values. A p-value
is the probability to obtain the observed data, or more extreme, in future repeated experiments. For example, for the
probability to observe 7 counts or more for a Poisson counting experiment with the background hypothesis of the
previous example (p1 = 3) is

oo
p(Hp) = Z Poisson(N|u = 3) = 0.23
N=7

A p-value is always specific to the hypothesis under which it is evaluated. When no specification is given, it usually
refers the to null-hypothesis, which is for discovery-style analyses the background-only hypothesis.

When the observed data is a distribution, rather than event count, the choice of T'(x) = z will no longer work. We
need a test statisticl to quantity if one (multi-dimensional) histogram of observed data [V is more extreme than another
one. A useful test statistic for distribution is the likelihood ratio test statistic

—

One can intuitively see that A(/V) orders datasets according to signal extremity: For a dataset Ng that is very signal-
like L(]\75|HS+B) will be large, since the data is probable under this hypothesis, and J\fS\HB) will be small, since
the data is improbable under this hypothesis, hence the ratio will be large. Conversely for a dataset Ny that is very
background-like L(Nz|Hg. ) will be small, since the data is probable under this hypothesis, and L(Nz|H ) will
be large, since the data is improbable under this hypothesis, hence the ratio will be large.

8 Chapter 2. Statistical Tests
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With a likelihood-ratio test statistic, frequentist p-values can be calculated for observable data distributions or arbitrary
complexity as the test statistic 7'(Z) maps any dataset x into a single number T'(x), reducing the p-value calculation
to an integral over the expected test statistic distribution under a given hypothesis

b= [ T par

T(-'E)obs)

where f(T|H;) is the expected distribution of values of the test statistic 7' under the hypothesis H;. Note that the
Poisson example of Eq ref poisT follows from the general form of Eq ref Tdist with the choice T (V) = N and
H; = Poisson(p = 3), where integration was replaced with a summation because of the integer nature 7(N) = N.
Figure ref tsdist illustrates the concept of the distribution of the test statistic and its relation to the definition of the
p-value.

A practical complication in the calculation of p-values for distribution is that, unlike the Poisson example with T'(x) =
a where distribution of T'(z) is known because it simply the Poisson distribution of « itself, the distribution f (7’| H;)
is generally not known. A simple, but but computionally expensive solution is the estimate the distribution f(7T'|H;)
from toy Monte Carlo simulation: a histogram of the 7'(x) values from ensemble of toy datasets = drawn from the
hypothesis H; will approximate the distribution f(7T'|H;). For certain choices of T'(z) analytical distributions are
known under asymptotic conditions, and will be discussed in Section ref composite

While not discussed further in these lecture notes, for situations where analytical prescriptions are known for the
distribution of observable quantities x, the concept of a probability model can be extended into the concept of a
probability density model f(x) where [ f(z)dz = 1 and the definite integral fab f(z)dz represents the probability
to observe an event in the observable range a < x < b. All of the statistical inference techniques discussion in this
section can be identically executed using such probability density function instead of probability models.

2.3 Hypothesis tests as basis for event selection

“Optimal event selection and machine learning”

In the example Poisson model studied so far, we have focused on the statistical analysis of a counting experiment that
is performed in an otherwise unspecified event selection. Designing an optimal event selection for a particular signal
problem is nevertheless a core element of particle physics data analysis, and usually precedes statistical analysis of
the selected event. The reason it is discussed in this lecture after an introduction on test statistics is that the theoretical
basis for optimal event selection is closely connected to the likelihood ratio test statistic. In fact, with the introduction
of the likelihood ratio test statistic we have already solved optimal the event selection problem for simply hypotheses:
any selection defined by a lower cut on the likelihood ratio test statistic

L(Z|Hs+B)

M) = @)

will select on the most signal-like events in the total collection, only leaving the issue of deciding on cut the value that
will define the desired purity of the selection.

The general concept of event selection relates to the statistical subject of classical hypothesis testing. In classical
hypothesis testing we define two competing hypothesis, traditional called the null hypothesis Hj, representing the
background hypothesis in event selection, and the alternate hypothesis H; representing the signal hypothesis in event
selection. The goal of an event selection is to select as many signal events as possible, while rejecting as many
background events as possible. The succes at meeting these competing goals is quantified in two measures:

e The ‘type-I’ error rate o, also called the size of the test. This rate represent the false positive rate, e.g. unjustly
convicted suspects in trial, or background events mistakenly accepted in the signal selection.

¢ The ‘type-II’ error rate 3, where 1 — [ is also called the power of the test. This rate represent the false negative
rate, e.g mistakenly acquitted criminals or signal events mistakenly not selected in the signal region.

2.3. Hypothesis tests as basis for event selection 9
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In general classical hypothesis testing, these goals are treated asymmetrically to construct an unambiguous optimiza-
tion goal: the false positive rate « is usually fixed to user-defined acceptable level (e.g. 5%), and the false negative rate
[ is then minimized. In HEP event selection problems on the other hand, no fixed value for « is typically assumed,
instead the optimal tradeoff between « and (3 is chosen with the aid of a figure of merit that quantifies the performance
of the statistical analysis of events in the signal region, such as the expected significance of the signal.

In 1932 Neyman and Pearson demonstrated that the optimal event selection for a problem with two competing hy-
potheses ( Hy = background and H; = signal) the region W that minimizes the type-II error rate 8 for a given type-I
error rate « is defined by a contour of the likelihood ratio,

L(z|H

(| H1) -

L(x[Ho)
which is form very similar to the likelihood ratio test statistic A(Z) of Eq. ref lambda. The NP lemma also proves that
A(Z) is an optimal test statistic, i.e. no information that distinguishes Hg g from H g is lost in the compactification
Z — T(Z).

Even though Eq. ref NPlemma provides the optimal event selection for a signal and background events characterized
by hypotheses H; and Hy, it is not always a practical criteria: it requires that the probabilities L(z|H1) and L(x|Hy)
are calculable for any . In practice the only information available on Hy and H; is an ensemble of simulated events
x drawn from each hypothesis. Except for low dimensions of , where a histogram in = can be populated for the full
phase space, the ensembles of simulated events do not allow to calculate the probabilities L(x|H;) and L(z|Hy) that
are required to use Eq. NPlemma.

Instead a different strategy can be followed that is aimed at approximating the optimal decision boundary with an
Ansatz function with parameters that can be “machine learned”, or otherwise inferred from training data.

2.4 Composite hypotheses (with parameters) for distributions

“Confidence intervals and maximum likelihood”

All statistical techniques discussed so far were based on simple hypotheses in which the distribution of observables is
fully specified. In other words, simple hypotheses cover situations in which there are no known uncertainties in the
model that is intended to describe the data. Most practical problems in physics analysis however involve a multitude of
uncertain effects, ranging from uncertain calibration constants to unknown signal cross-sections. These uncertainties
are accounted for in the concept of composite hypotheses, which can have one or more parameters whose value
is a priori not precisely known. To illustrate the concept of composite hypothesis we extend the Poisson counting
experiment of the previous section into a composite hypothesis by introducing the signal rate as a model parameter,
rather than having it as a known constant’

L(N) = Poisson(N|5 + b) — L(N|s) = Poisson(N|s + b)

Figure ref poisson_composite shows the probability distribution for possible counting outcomes of Eq. ref poisson_sb
for various assumed values of its parameter s. A composite hypothesis can have any number or type of parameters.
Parameters are usually distinguished in two types: “parameters of interest”, and “nuisance parameters”. A parameter
of interest (POIs) is any parameter that one is ultimately interested in, e.g. the reported physics quantity of the analysis.
Many analyses have a single parameter of interest, but multiple POIs can also occur, for example in a measurement
of Higgs boson couplings each coupling will have its own POI. Nuisance parameters are then implicitly defined as
all other model parameters that are not of interest. Typically nuisance parameter described uncertainties in detector
modelling (calibration uncertainties, efficiencies) and theoretical modelling (factorization/normalization scales). We
will now first consider composite hypothesis with a single parameter of interest and no nuisance parameters, return-
ing to the issues of nuisance parameters in Section ref np. Where statements on simple hypotheses were limited to
P(data|H) and P(H |data) composite hypothesis offer a new range of probabilistic statements that can be made on
the model parameter (of interest):

2 To facilitate the distinction between symbolic constant expressions (a known background) and symbolic parameters (an unknown background)
all constant symbols are marked with a tilde: i.e. a is constant expression, whereas a is a parameter.

10 Chapter 2. Statistical Tests
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» Parameter value and variance estimation: e.g. s = 4.3 £ 0.7
* Confidence intervals: e.g. s < 7.7 at 95% C.L.
* Bayesian credible intervals: e.g s < 7.6 at 95% credibility

Parameter estimations determines for which value § of the parameter s the observed data is most probable. A parame-
ter variance estimate determines the variance of such a point estimate, where the variance is defined in the usual way as
<52> — <s>2 The variance expresses how much the point estimate s will vary in repeated identical experiments. Confi-
dence intervals and Bayesian credible intervals convey conceptually similar information, but with different definitions
and properties.

2.4.1 Maximum Likelihood parameter estimation

The procedure to obtain the value § of a model parameter s for which the data is most probably is called the method
of maximum likelihood. The procedure entails finding the value s for which L(s) is maximal. For a simple likelihood
like that of Eq. ref poisson_sb the estimation s can be performed analytically by differentiation, for more complex like-
lihood expressions the estimations is performed numerically, where it is customary to find the maximum of — log L(s)
rather than the maximum of L(s) as it is numerically more stable:

—dlog L(p)

=0
dp

p=p

The standard notation is that p is the (maximum likelihood) estimator of parameter p: it represents value of p that is
obtained by running the (maximum likelihood) estimation procedure on that parameter. Figure ref poisson_shat shows
the value of the negative log-likelihood — log L(N = 7|s) for the Poisson model of Eq. ref poisson_sb where b=5.
Note that the L(N|s) is continuous in s, even though N only takes integer values. The maximum likelihood § is the
value of s for which — log L(s) is minimal, i.e. § = 2.

Maximum likelihood estimators are commonly used because they have desirable properties: ML estimators are in
general

» Consistent: you get the correct answer in the limit of infinite statistics

* Mostly unbiased: the bias is proportional to 1/N, which becomes small compared to the estimated uncertainty
proportional to 1/v/N for moderate N.

o Efficient for large :math: ‘N*: The actual variance of ML estimator s will not be larger than <32> — <s>2

e Invariant: A transformation of parameters will not changes the answer, i.e. (p)? = p2.

In particular, the Maximum Likelihood Efficiency theorem states that a ML estimator will be efficient and unbiased for
a given composite hypothesis if an unbiased efficient estimator exists for that hypothesis (proof not discussed here).

2.4.2 Parameter variance and the central limit theorem

It is important to note that term “uncertainty on a parameter estimate” is not uniquely defined. Multiple procedures
exist that define intervals on parameters, that may yield different results depending on the underlying distributions.
One of the common procedure to define an uncertainty is to take the square-root of the variance of the parameter,
defined as

(p*) - (p)*

For Gaussian distributions an 1o interval defined by vV will contain 68% of the distribution. For other distributions
this fraction may be different, nevertheless the variance is a well-defined distribution for almost any distribution®. In

3 An notable example of a distribution that has no well-defined mean or variance is the non-relativistic Breit-Wigner distribution.

2.4. Composite hypotheses (with parameters) for distributions 11
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practice most distributions that do not suffer from very low statistics are approximately Gaussian due to the Central
Limit Theorem CLT) which states that the sum of N independent measurement x;, each taken from a distribution of
mean m; and a variance V; has an expectation value (z) = Zi Wi, @ variance V, = Zi V; and becomes Gaussian
in the limit of large N. Figure ref clt demonstrates this property of the CLT for a sum of 2,3,12 measurements x;
, each drawn from a very non-Gaussian flat distribution, where the N = 12 case already results in a very Gaussian
distribution. The variance V), of a parameter estimate p can be obtained with the Maximum Likelihood Variance

estimator
-~ (dlogL\
O

The ML variance estimator is only efficient, i.e it will not estimate variance larger than the true variance, when the ML
estimator of p is unbiased, which is usually the case at moderate to high statistics.

2.4.3 Confidence intervals

Another approach to defining intervals on parameters is the frequentist confidence intervals. The advantage of such
fundamental methods is that they make no assumptions on the distribution (and are therefore useable in very low
statistics cases) and return calibrated probabilistic statements, i.e. a 68% confidence interval definition does not rely
on the fact that the underlying distribution is Gaussian.

The classical, or frequentist confidence intervals arrives at this calibrated and distribution-independent statement as
follows. Given a probability model f(x|u) with a single parameter u, the expected distribution of the observable  is
mapped out for all values of i (see Fig ref nmconstr a). Next, an acceptance interval is defined for the distribution of
x. A simple and common way to define an acceptance interval is to take a 68% central interval, i.e. defined the interval
such that 16% of the distribution sits on both the left and right side of the defined interval (Fig ref nmconstr b). Then
these accepted regions in f(z|u) are connected for all values p ((Fig ref nmconstr ¢). This region in f(x|u)-vs-mu
space is called the confidence belt. To defined a confidence interval on p, a line at the observed value x5 is intersected
with the confidence belt to obtain the interval [0_, 6. ]. The result of this procedure, called the Neyman Construction, is
that the true value of 6, guaranteed to be contained in 68% of repeated measurements of this type, without assumptions
on the distribution f(x|u). Confidence intervals can also take different shapes. For example, when instead of a 68%
central interval, a 95% lower interval is chosen as acceptance region in f(z|u), the resulting confidence interval on
6 will be a 95% upper limit. Confidence intervals thus provide great flexibility in the form in which results can be
formulated, dependening on the ordering rule, the procedure that is chosen to define an acceptance interval on f(z|u).

Note that frequentist confidence intervals strictly make no probabilistic statement about the true value of p. In the
frequentist concept of probabilities the true value of u is fixed, but unknown, and no probability distribution can be
assigned to it. Instead the interval estimation procedure is constructed such that the intervals it produces are guaranteed
to contain in exactly 68% (or 95%) of the repeated identical measurements the true (but unknown) value.

Confidence intervals using likelihood ratios

The text-book case of the construction of confidence intervals as shown in Fig ref nmconstr works only for simple
probability models with a single observable x. To define confidence intervals on probabity models where the observ-
able z is not a single number, but a (multi-dimensional) distribution, the likelihood ratio technique introduced earlier
in Section 3.3 comes to the rescue. Instead of taking an ordering rule that defines an interval in f(x|u), a new ordering
rule is introduced that instead defines an interval on a likelihood ratio based on f(x|u)

L(N|Hsp)

M = i)

to define a confidence belt. Whereas the text-book confidence belt of Fig ref nmconstr provided an intuitive graphical
illustration of the concept of acceptance intervals on x and confidence intervals in u, a confidence belt based on a
likelihood-ratio ordering rule may seem at first more obscure, but in reality isn’t. Figure ref nmconstr2 compares
side-by-side the text-book confidence belt of f(z|u) with a LLR-based confidence belt of A(IN|z). We observe the
following differences
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« The variable on the horizontal axis is A(N|z) instead of f(z|u). As A(INV|p) is a scalar quantity regardless of the
complexity of the observable N this allows us to make this confidence belt construction for any model f (N |u)
of arbitrary complexity.

* The confidence belt has a different shape. Whereas the expected distribution f(x|u) is typically different for
each value of u, the expected distribution of )\(ﬁ |u) typically is independent of p. The reason for this is
the asymptotic distribution of )\(]\7 |p) that will be discussed further in a moment. The result is though that a
LLR-based confidence belt is usually a rectangular region starting at A = 0.

« The observed quantity A(NN|1),5s depends on y unlike the observed quantity s in the textbook case. The rea-
son for this is simply the form of Eq.ref{eq:1lr} that is an explicit function of x.. Asymptotically the dependence
of A(V|u) on p is quadratic, as shown in the illustration.

The confidence belt construction shown in Fig ref nmconstr2, when rotated 90 degrees counterclockwise looks of
course very much like an interval defined by a rise in the likelihood (ratio), as is done by MINUITS MINOS procedure,
and that correspondence is exact in the limit of large statistics. This last observation brings about an important point:
in the limit of large statistics, the ‘simple’ procedure of defining an interval by a rise in the likelihood ratio defines
a proper frequentist confidence interval with its desirable properties: the result is independent of the distribution and
the quoted (68 or 95%) confidence level is calibrated. This asymptotic correspondence of the completely general
(and potentially) expensive Neyman Construction procedure with its desirable calibration properties and asymptotic
and computationally light likelihood ratio interval procedure occurs when Wilks theorem is satisfied, i.e that the
distribution of A(]\7 ) for data sampled under the hypothesis y is asymptotically distributed as a x? distribution, and
therefore is independent of y. Note that this condition does not imply that the likelihood ratio as function of y is
exactly parabolic, thus the interpretation of asymmetric MINOS error as frequentist confidence intervals is correct
as long as Wilks theorem is met. When in doubt, one can check this requirement by verifying that the distribution
of )\(]\7 |11) values from a suitable large sample of toy datasets follows the asymptotic x? distribution, as is shown in
Figure ref wilks.

Confidence intervals with boundaries

As frequentist confidence intervals make statements on the frequency of measured values and do not aim to inter-
pret these measurement values as a probabilistic statement on constants of nature as a Bayesian procedure does, the
occurence of intervals that (partially) cover unphysical values do not pose a problem. A classical situation of this
type is the Poisson counting experiment where the observed event count is less than the expected background event
count. For example, for a counting experiment with 10 expected background events and 3 expected signal events,
an observation of 8 events is entirely unproblematic, although the resulting parameter estimate of -2 signal events is
sometimes frowned upon. The key to interpreting such a result is to realize that -2 signal events is strictly the outcome
of a measurement procedure, and is expected to occur at some frequency. If the negative fluctuation is substantial,
e.g. 5 observed for 10 expected background, it can happen that the resulting interval estimate only brackets negative
values for the signal count, in other words, all signal counts greater than O are excluded, at 95% confidence level. Also
this is, strictly speaking, not a problem, as the true value is outside the quoted interval in 5% of the measurements by
construction. Nevertheless, many physicists are uncomfortable quoting a result of this type as the final outcome as the
result of a physics measurement.

It is possible to adjust the construction procedures of confidence intervals such that such unphysics intervals cannot
occur and yet respect the essential calibration property of the Neyman construction - namely that the reported intervals
are guaranteed to contain the true value in 68% or 95% of the cases. The key to accomplish this is to only modify the
ordering rule, but leave the Neyman construction itself (which guarantees the calibration) unchanged. To do so the
standard likelihood ratio ordering rule, encoded by

is replaced by

2
——
ok
SEEE
<< <
= =
AN
o O
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The ordering rule # changes the interpretation of observations with j < 0. Consider the ordering rule for the no-signal
hypothesis (mu=0) for an observation of /i = —2: The traditional test statistic ¢,, will consider this observation to be
inconsistent with the no-signal hypothesis: log(L(x|0)/L(x| — 2)) will be larger than zero. At as sufficiently negative
i, when t,, becomes larger than 0.5 for ;1 = 0, the points ¢ > 0 will be excluded from a 68% confidence interval and
once it becomes larger than 2, the points p > 0 will also be excluded at 95% C.L.

The modified test statistic £ . Will on the other hand consider any observation with i < 0 to be maximally consistent
with the no-signal hypothesis: log(L(x|0)/L(x|0)) will be exactly zero for any observation with /i < 0! The effect of
this modification on the resulting confidence belt is that 4 = 0 is inside the confidence interval corresponding to any
observation with /i < 0, hence no downward fluctuations w.r.t the background estimate will result in the exclusion of
u = 0. In practice, small positive values of p will also not be excluded, hence any observation with i < 0) will result
in a confidence interval [0, ut ], with the size of the confidence interval decreasing with decreasing i < 0).

Observations of event counts much larger than the background estimate, on the other hand, do not trigger such special
handling. Thus the observation of a very large positive event count will exclude ;¢ = 0 from the confidence interval,
and result as usual in a two-side confidence interval [u_, 1], corresponding to a measurement-style result. The
point where the transition from a one-sided interval of the from [0, x4 ] transitions into a two-sided interval [pi_, pi4 ] is
automatically determined by the procedure. In the HEP literature the confidence intervals constructed with an ordering
rule based on the modified likelihood ratio f,, is usually called the ‘modified frequentist procedure’, or Feldman-
Cousins, and is considered to be a ‘unified’ procedure as the transition from upper limits to two-sided intervals is
automatically determined. As for ¢,, asymptotic distributions for the modified test statistic fu are known, and are
discussed in detail in [X].

2.4.4 Bayesian credible intervals

The introduction of composite hypotheses in Bayesian statistics transforms Bayes theorem from an equation calculat-
ing probabilities for hypothesis, into an equation calculating probability densities for model parameters, i.e.

2.5 Statistical inference with nuisance parameters

“Fitting the background”

In all examples of this course so far, we have only considered ideal experiments, i.e. experiments that have associated
systematic uncertainties originating from experimental aspects or theoretical calculations. This section will explore
how to modify statistical procedures to account for the presence of parameter associated to systematic uncertainties,
whose values are not perfectly known.

2.5.1 What are systematic uncertainties

The label systematic uncertainty strictly originates in the domain of the (physics) problem that we are trying to solve,
it is not a concept in statistical modelling. In practice, a systematic uncertainty arises when there effect whose precise
shape and magnitude is not know affects our measurement, hence we need to have some estimate of it. A common ap-
proach is that we aim capture the unknown effect in one or more model parameters, whose values we then consider the
not perfectly known. A good example is a detector calibration uncertainty that affects an invariant mass measurement.
If the assumed calibration in the statistical analysis is different from the true (but known) calibration of the detector the
measurement will be off my some amount. In most cases some information is available on the unknown calibration
constant, in the form of a calibration measurement with an associated uncertainty “the energy scale of reconstructed
jets has a 5% uncertainty”. An example of a systematic uncertainty arising from theory is a cross-section uncertainty
on a background process in a counting experiment. In both these cases the goal is propagate the effect of the uncer-
tainty on the parameter associated with the theoretical uncertainty to the measurement of the parameter of interest. In
the discussion of systematic uncertainties there are hence two distinct aspects that should be distinguished
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¢ Identifying which are the degrees of freedom associated with the conceptual systematic uncertainty, and imple-
ment these as model parameters

* Account for the presence of these uncertain model parameters in the statistical inference.

The first aspect is a complex subject that is strongly entangled in the physics of the problem that one aims to solve and
is discussed in detail in the next section, whereas the second subject is purely on statistical procedure, and is discussed
in this section following a simple example likelihood featuring one or more such “nuisance parameters”.

Treatment of nuisance parameters in parameter point and variance estimation

To illustrate the concept of nuisance parameter treatment in point and variance estimation, we can construct a simple
extension of the Poisson counting example introduced in Equation X33, by now considering the background that was
previously assumed to exactly known, to be unknown, and measurement from a second counting experiment that only
measures the backgroundfootnote{ The experiment is constructed such that the background rate measurement in the
control regions is three times the expected background rate in the signal region. }

L(s) = Poisson(N|s 4+ b) — L(s,b) = Poisson(Ngg|s + b) - Poisson(N¢g|3 - b)

The likelihood function of Eq. ref PoissonSB can be used to construct a 2-dimensional measurement of both s and
b following the procedures outline in Section X, but given that we are now only interested in the signal rate s and
not in the background rate b, the goal is to formulate a statement on s only, while taking into account the uncertainty
on b. Figure ref PoissonSB2D shows the 2-dimensional likelihood function for L(s, b) for an observation of Ngg =
10, Nor = 10. A likelihood L(s) without nuisance parameters that assumes b = 5 corresponds to the slice of the plot
indicated at the dashed line and will estimate § = 5, where the maximum likelihood is found in that slice. A likelihood
L(s,b) with b as a nuisance parameter will instead find the minimum b= 3.3,5 = 6.7, with the effect of the nuisance
parameter ostensibly taken into account.

The effect of the nuisance parameter b on the variance estimate of s comes in through the extension of the one-
dimensional variance estimator into a multidimensional covariance estimator

A oL oL\
V(s):<d82> — V(s,b) = 5% fggTdLb

If the estimators of s and b are correlated, the off-diagonal elements of the matrix in Eq. ref covariance are non-zero
and the variance estimates on s using V(s) and V (s, b) will differ. This difference in variance is visualized in Fig
ref covsb that shows a contour of L(s, b) in the s, b plane assuming a Gaussian distribution for a scenario where the
estimates of s, b are somewhat anti-correlated (left) and uncorrelated (right). The square-root of the variance estimate
on s using V() corresponds to the distance between the intersection of the the line b = b with the likelihood contour
(red line). The square-root of the variance estimate on s using V (s, b) corresponds the size of the box that encloses
the the contour. If the estimators of s and b are uncorrelated, both methods will return the same variance, reflecting
that the uncertainty on b has no impact on the measurement of s. If on the other had the estimators of s and b are
correlated, the variance estimate from V' (s, b) will always be larger than the estimate from V (s), reflecting the impact
of the uncertainty on b on the measurement on s.

Treatment of nuisance parameters in hypothesis testing and confidence intervals
The calculation of p-values for hypothesis testing in models with a parameter of interest u, but without nuisance

parameters is based on the distribution of the test statistic p,, = ftoo . f(tu|p)dt,, wheret, is the test statistic (usually
,0bs

a likelihood ratio), f(¢,|u) is the expected distribution of that test statistic and t,, s is the observed value of the test
statistic. With the introduction of a generic nuisance parameter 6, i.e. L(u) — L(u, 6) the distribution of a test statistic
based on that likelihood (ratio) will generallly also depend on 6

00
Pu = / f(tltlﬂ'a e)dtm
tu, obs

and hence the question now is, what value of ¢ to assume in the distribution of ¢,,? Fundamentally, we want to reject
the hypothesis p at a% C.L. only if p,, < 1 — « for any value of :math: ‘theta‘. In other words, if there is any

2.5. Statistical inference with nuisance parameters 15
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value of # for which the data is compatible with hypothesis 1z we do not want to reject the hypothesis. This approach
appears a priori extremely challenging both technically (performing the calculation for each possible value of #) also
conceptually (one should really consider values of 6 that are itself excluded by other measurements), but it turns out
that with a clever choice of ¢, the statistical problem becomes quite tractable. The key is to replace the likelihood ratio
test statistic with the profile likelihood ratio test statistic

L(p) g, Lsd)
I@ M lgL(ﬂ,é)’

t, = —2log

where the symbol ﬁ represents the conditional* maximum likelihood estimate of §. Note that the profile likelihood

ratio test statistic A, does explicitly not depend on the Likelihood parameter 6 as both 6 and 6 are determined by the
data. In the limit of large statistics the distribution of the test statistic f (Au| Utrues Otrue) follows a x? distribution,
just like the distribution of ¢,,. This is nice for two reasons: first it allows us to reuse the formalism developed for the
construction of confidence intervals based on ¢,, to be recycled for A, by simply replacing the test statistic. Second
it means that f(A,|fttrue, O¢rue) is asymptotically independent of the true value of both fiyye and €y.,e so that the
interval based on A, convergence to a proper frequentist interval even in the present of nuisance parameters in the
asymptotic limit.

It is instructive to compare the plain likelihood ratio ¢,, and profile likelihood ratio A,, for an example model: the dis-
tribution of an observable z that is described by a Gaussian signal and and order-6 Chebychev polynomial background.
The corresponding likelihood function has one parameter of interest, the signal strength, and 6 nuisance parameters,
the coefficients of the polynomial. Figure ref plrdemo shows the distribution of the plain likelihood ratio (blue, top)
and the profile likelihood ratio (red, bottom). As the likelihood model with floating nuisance parameters is generally
more consistent with the observed data for each assumed value of the signal strength (as the polynomial background
can be configured to peak or dip in the signal region), the confidence interval of the profile likelihood ratio is wider
than that of the plain likelihood ratio, reflecting the additional uncertainty introduced on the measurement of the signal
strength by the fact that the background shape is not perfectly known.

2.6 Response functions and subsidiary measurements
“Sideband fits and systematic uncertainties”

2.6.1 Morphing

2.6.2 Barston Beelow

including notes on BB-lite

4 Where the condition is that the POI is @xed at the value p, rather than allowed to float to the value /i in the minimization, as is the case in the
minimization of the unconditional estimate 6
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2.7 Statistical Inference with Nuisance Parameters

2.7.1 Model Validation of constrained parameters
2.8 Binned and Unbinned Models

2.8.1 Choice of binning

2.8.2 Use of Unbinned Distributions

2.9 Joint Measurements

2.9.1 Combination, Control and Validation Regions

2.10 Advanced Topics

2.10.1 Advanced limit setting

CLS, different TSs for limit setting, FC-style limits, etc.

2.10.2 Trial factors/LEE
2.10.3 Hybrid methods
2.10.4 MCMC

2.10.5 Jeffreys priors

2.10.6 Likelihood principle

2.7. Statistical Inference with Nuisance Parameters
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CHAPTER 3

Tools for Model Building and Good Practices

This section discusses the specific tools for recommended for building valid and robust statistical models. The RooFit
pacakge is core to data modeling in ROOT.

We begin with a discussion of the RooFit philosophy - we want a single language for all measurements: common
tools & joint model building (other tools) followed by a description of the RooFit language basics, and the workspace.
A series of tools for building & manipulating models built using RooFit as a foundation are described with some
links and general usage. Finally a list of good practices are presented regarding issues such as modeling systematics,
uncertainties, and model cleaning among others.

3.1 RooFit

3.1.1 RooFit - a model building language

The main feature of the design of the RooFit/RooStats suite of statistical analysis tools is that the tools to build
statistical models and the tools to perform statistical inference are separate, but interoperable. This interoperability is
universally possible because all statistical inference is based on the likelihood function.

The goal is that all tools in the RooStats suite can analyse any model built in RooFit. The interoperability is facilitated
in practice by the concept of the workspace (RooFit class RooWorkspace) that allows to persist statistical models of
arbitrary complexity into ROOT files and thus allow to separate the model building phase and the statistical inference
phase of a data analysis project both in space and time

3.1.2 RoofFit basics

This section will cover the essentials of the RooFit modelling language, which wil aid in the understanding of the role
of higher level modelling tools and model manipulation.

The key concept of RooFit probability models is that all components that form the mathematical expression of a
probability model or probability density function are expressed in separate C++ objects. Base classes exist to represent
e.g. variables, functions, normalised probability density functions, integrals of function, datasets, and implementations
of many concrete functions and probability density functions are provided.
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The examples below show how a Gaussian and Poisson probability model are built by constructing first the component
objects (the parameters and observables), and the the probability (density) functions.

// Construct a Gaussian probability,,
—density model

RooRealVar x("x","x",0,-10,10) ;
RooRealVar mean ("mean", "Mean of Gaussian
-",0,-10,10) ;

RooRealVar width ("width", "With of |
—~Gaussian",3,0.1,10) ;
RooGaussian g ("g", "Gaussian", x,
—width) ;

mean,

// Construct a Poisson probability model
RooRealVar n("n", "Observed event cont",O,
—0,100) ;

RooRealVar mu("mu", "Expected event count
~",10,0,100) ;

RooPoisson p("p","Poisson",n, mu) ;

# Construct a Gaussian probability,,
—density model

x = ROOT.RooRealVar ("x","x",0,-10,10)
mean = ROOT.RooRealVar ("mean", "Mean of |
—~Gaussian",0,-10,10)

width = ROOT.RooRealVar ("width","With of
—~Gaussian",3,0.1,10)

g = ROOT.RooGaussian("g", "Gaussian",ROOT.
—~RooArgSet (x), mean,width)

# Construct a Poisson probability model
n = ROOT.RooRealVar ("n", "Observed event,
—cont",0,0,100)

mu = ROOT.RooRealVar ("mu", "Expected,
—event count",10,0,100)

p = ROOT.RooPoisson ("p","Poisson",n, mu)

RooFit implements all basic functionality of statistical models: toy data generation, plotting, and fitting (interfacing
ROOTs minimisers for the actual -logl. minimisation process).

// generate unbnined dataset of 10k
—events

RooDataSet* toyData = g.generate(x,
—~10000) ;

// Perform unbinned ML fit to toy data
g.fitTo (xtoyData) ;

// Plot toy data and pdf in observable x
RooPlot* frame = x.frame() ;
toyData->plotOn (frame) ;

g.plotOn (frame) ;

frame->Draw () ;

Open in gy SWAN

# generate unbnined dataset of 10k events
toyData = g.generate (ROOT.RooArgSet (x),
—10000)

# Perform unbinned ML fit to toy data
g.fitTo (toyData)

# Plot toy data and pdf in observable x
frame = x.frame ()

toyData.plotOn (frame)

g.plotOn (frame)

frame.Draw ()

Open in ¢y SWAN

As the likelihood function plays an important role in many statistical techniques, it can also be explicitly constructed

as a RooFit function object for more detailed control
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// Create Likelihood function L (x/|mu,
—sigma) for all x in toy data
RooAbsRealx nll = g.createNLL (xtoyData)

// ML estimation of model parameters,,
—mean, width

RooMinimizer m(*nll) ;

m.migrad() ; // Minimization
m.hesse () ; // Hessian error analysis

// Result of minimisation and error,
—analysis 1s propagated

// to variable objects representing,
—model parameters

mean.Print () ;

width.Print () ;

// Visualize likelihood L (mu,
// at sigma =
—<3.1
RooPlot* frame2 = mean.frame(2.9,3.1) ;
nll->plotOn (frame2) ;

frame2->Draw () ;

Open in ¢y SWAN

sigma)
sigma_hat in range 2.9<mu

’

# Create Likelihood function L (x|mu,
for all x in toy data
g.createNLL (toyData)

—sigma)
nll =

# ML estimation of model parameters mean,
—width

ROOT.RooMinimizer (nll)

m.migrad() # Minimization

m.hesse () # Hessian error analysis

m =

# Result of minimisation and error
—analysis is propagated

# to variable objects representing model
—parameters

mean.Print ()

width.Print ()

# Visualize likelihood L (mu,
# at sigma =
1

frame2 = mean.frame(2.9,3.1)
nll.plotOn (frame2)
frame2.Draw ()

Open in ¢y SWAN

sigma)
sigma_hat in range 2.9<mu<3.

RooFit implements a very wide range of options to tailor models and their use that are not discussed here in the interest
of brevity, but are discussed in detail here <insert_link>. RooFit also automatically performs an optimisation of the
computation strategy of each likelihood before each use, so that users that build models generally do not need to worry
about specific performance considerations when expression the model. Example optimisations include automatic
detection of unused dataset variables in a likelihood, automatic detection of expression that only depend on (presently)
constant parameters and caching and lazy evaluation of expensive objects such as numerical integrals. The following
links provide further information on a number of RooFit related topics

* Guide to the RooFit workspace and factory language <LINK>
* Guide to (automatic) computational optimizations in RooFit <LINK>

* Guide to writing your own RooFit PDF classes <LINK>

3.1.3 RooFit workspace essentials

The key to the RooFit/RooStats approach of separating model building and statistical inference is the ability to persist
built models into ROOT files and the ability to revive these with minimal effort in a later ROOT session. This ability
is powered by the RooFit workspace class, in which built models can be important, which organises the persistence of
these models, regardless of their complexity

3.1. RooFit 21
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// Saving a model to the workspace
RooWorkspace w("w")
w.import (g) ;
w.import (p) ;
w.import (xtoyData, RooFit: :Rename ("toyData
="))
w.Print () ;
w.writeToFile ("model.root")

// Reviving a model from a workspace
TFilex £ = TFile::Open("model.root")
RooWorkspace * w = (RooWorkspacex) f—>
—Get ("w")

RooAbsPdfx g = w->pdf("g") ;
RooAbsPdfx p = w—>pdf ("p") ;
RooDataSetx toyDatata = w—>data("toyData

="

# Saving a model to the workspace

w = ROOT.RooWorkspace ("w")
getattr (w, "import') (g)
getattr (w, "import") (p)

getattr (w, "import ') (toyData, ROOT.RooFit.
—Rename ("toyData™))

w.Print ()

w.writeToFile ("model.root")

# ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
# Reviving a model from a workspace
f = ROOT.TFile.Open ("model.root")

w = f£f.Get ("w")

g = w.pdf ("g")

p = w.pdf ("p")

toyDatata = w.data("toyData")

The code example above, while straightforward highlights a couple of important points

* Reviving a model or dataset is always trivial, typically 3-4 lines of code depending on the number of objects that
must be retrieved from the workspace, even for large workspaces e.g. full Higgs combinations that can contain
over ten thousand component objects.

 Retrieval of objects (functions, datasets) is indexed by their internal object, as giving to them in the first C++
constructor argument (all RooFit object inherit from ROOT class TNamed, which identical behaviour).

* For objects where the model building user did not explicitly specify the objects intrinsic name, like the toyData
object in the example above, it is possible to rename the object to a given name after the fact. The most
convenient path to do this is to do this upon import in the workspace, as shown in the code example above.

3.1.4 The ModelConfig interface object

Since model and data names do not need to conform to any specific convention, the automatic operation of statistical
tools in RooStats need some guidance from the user to point the tool the correct model and dataset. The interface
between RooFit probability models and RooStats tools is the RooStats::ModelConfig object. The ModelConfig
object has two clarifying roles

1. Identifying which pdf in the workspace is to be used for the calculation. The workspace content does not need to
follow any particular naming convention. The ModelConfig object will guide the calculator the desired model

2. Specifying information on the statistical inference problem that is not intrinsic to the probability model:

i.e. which parameters are “of interest”, which ones are “nuisance”, what are the observables to be consid-
ered,

and (often) a set of parameter values that fully define a specific hypothesis (e.g. the null or alternate hypothesis)

Here is a code example that construct a ModelConfig for the Poisson probability model created earlier
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// Create an empty ModelConfig
RooStats: :ModelConfig mc ("ModelConfig", &
—W) ;

// Define the pdf,
—interest and the observables

mc.SetPdf (»w.pdf ("p"));
mc.SetParametersOfInterest (xw.var ("mu"));
mc.SetObservables (xw.var ("n"));

the parameter of_,

// Define the value mu=1 as

// a fully-specified hypothesis to be_
—~tested later

w—>var ("mu") ->setvVal (1) ;
mc.SetSnapshot (»w.var ("mu")) ;

// import model in the workspace
w.import (mc) ;

# Create an empty ModelConfig
mc = ROOT.RooStats.ModelConfig(
—"ModelConfig", w)

# Define the pdf, the parameter of_
—iIinterest and the observables
mc.SetPdf (w.pdf ("p"))
mc.SetParametersOfInterest (w.var ("mu"))
mc.SetObservables (w.var ("n"))

# Define the value mu=1 as

# a fully-specified hypothesis to be_
—~tested later

w.var ("mu") .setVal (1)
mc.SetSnapshot (xw.var ("mu"))

# import model in the workspace
getattr (w, 'import") (mc)

When the intent is to use RooStats tools on a model, it is common practice to insert a ModelConfig in the workspace in
the model building phase so that the persistent workspace is fully self-guiding when the RooStats tools are run. More
details on this are given in Section 4 on statistical inference tools. The presence of a ModelConfig object can of course
also used to simply the use of workspace files outside the RooStats tools.

For example the code fragment below will perform a maximum likelihood fit on any workspace with a model and

dataset and valid ModelConfig object

void run_fit (const charx workspaceName,
—const charx datasetName) {

// Reviving a model from a workspace

TFilex £ = TFile::Open("model.root")
7

RooWorkspacex w = (RooWorkspacex) f->
—Get ("w")

RooStats:::ModelConfig* mc =
— (RooStats: :ModelConfig*) w->genobj (
—"ModelConfig")

RooAbsPdfx pdf =

—>GetName () ) ;

w—>pdf (mc—>GetPdf () —

// Load data from workspace
RooAbsDatax data = w—>
—data (datasetName) ;

if (!pdf || !data)
pdf->fitTo (xdata) ;

return ;

}

Open in ¢y SWAN

def run_fit (workspaceName, datasetName) :
# Reviving a model from a workspace
f = ROOT.TFile.Open ("model.root")

w = f.Get (workspaceName)

w.genobj ("ModelConfig")

w.pdf (mc.GetPdf () .GetName () )

mc =
pdf =

# Load data from workspace
data = w.data (datasetName)

if pdf is None or data is None:
—return None
pdf.fitTo (data)

Open in gy SWAN

The example above is not completely universal, because it does not deal with ‘global observables’, this issue is ex-

plained further in later sections.

3.1. RooFit
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3.1.5 The workspace factory

To simplify the logistical process of building RooFit models, the workspace is also interfaced to a factory method that
allows to fill a workspace with objects with a shorthand notation. A short description of the factory language is given
here with the goal to be able to understand code examples given later in this section. A full description of the language
is, along with a comprehensive description of other features of the workspace is given here <INSERT_LINK>

The workspace factory is invoked by calling the factory() method of the workspace and passing a string with a con-
struction specification, which typically look like this:

RooWorkspace w("w") ; RooWorkspace w("w")

w.factory ("Gaussian::g(x[-10,10],m[0,-10, w.factory ("Gaussian::g(x[-10,10],m[0,-10,
—10]1,s[3,0.1,1001)"™) —10]1,s1[3,0.1,101)™)

w.factory ("Poisson::p(n[0,100],mul[3,0, w.factory ("Poisson::p(n[0,100],mu[3,0,
—100])") ; —1001)") ;

The syntax of the factory, as shown, is simple because it is limited - the two essential operations are 1) creation of
variable objects and 2) the creation of (probability) functions.

For the first task, the following set of expressions exist to create variables:
* name [xmin, xmax] creates a variable with given name and range. The initial value is the middle of the range
* name [value, xmin,xmax] creates a variable with given name and range and initial value
* name [value] creates a named parameter with constant value
* value creates an unnamed (and immutable) constant-value object

e name[label, label, ...] creates a discrete-valued variable (similar to a C++ enum) with a finite set of
named states

For the second task, a single syntax exists to instantiate all RooFit pdf and function classes
* ClassName::objectname(. . .) creates an instance of ClassName with the given object name (and identical title).
The three important rules are

1. The class must be known to ROOT (i.e. if it is defined in a shared library, it must have been loaded already).
The prefix “Roo” of any class name can optionally be omitted for brevity

2. The meaning of the arguments supplied in the parentheses map to the constructor arguments of that class that
follow after the name and title. In case multiple constructors exist in a class, they are tried in the order in which
they are specified in the header file of the class.

3. Any argument that is specified must map to the name of an object that already exists in the workspace, or be
created on the fly.

These factory language rules can be used to create objects one at a time, as is shown here
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// Create empty workspace # Create empty workspace
RooWorkspace w("w") ; w = ROOT.RooWorkspace ("w")

// Create 3 variable objects - # Create 3 variable objects -

// to be used as observable and_, # to be used as observable and,
—parameters of —parameters of

// a Gaussian probability density,, # a Gaussian probability density,,
—model —model

w.factory ("x[-10,101") ; w.factory ("x[-10,10]")

w.factory ("mx[0,-10,10]") w.factory ("mx[0,-10,10]"™)

w.factory ("sx[3,0.1,10])"™) ; w.factory ("sx[3,0.1,10])")

// Create a Gaussian model using the_, # Create a Gaussian model using the_
—previously defined variables —previously defined variables
w.factory ("Gaussian::sigx(x,mx,sx)") ; w.factory ("Gaussian::sigx(x,mx,sx)")
// Print workspace contents # Print workspace contents

w.Print ("t") ; w.Print ("t")

RooWorkspace (w) w contents

variables

(mx, sx, x)

p.d.f.s

RooGaussian::sig[ x=x mean=mx sigma=sx ] = 1

Creating models one object at a time, can still be quite space consuming, hence it possible to nest construction oper-
ations. Specifically, any syntax token that generates an object returns (e.g. x[-10,10]’) the name of the object created
(‘x’) , so that it can be used immediately in an enclosing syntax token. Thus a nested construction specification can
construct a composite object in a single token in a natural looking form. The four lines of factory code of the previous
example can be contracted as follows

// Create a Gaussian model and all its variables
w.factory ("Gaussian::sigx(x[-10,10],m[0,-10,10],s([3,0.1,10])™)

Use of existing objects and newly created object can be freely mixed in any expression. The example below creates a
second model for observable y using the same (existing) parameter objects as the Gaussian pdf sig:

// Create a Gaussian model using the previously defined parameters m, s
w.factory ("Gaussian::sigy(y[-10,10],m,s)")

As the power of RooFit building lies in the ability combine existing pdfs, operator pdfs that multiply, add, or convolve
components pdfs are frequently used. To simply their use in the factory, most RooFit-provided operator classes provide
a custom syntax to the factory that is more intuitive to use than the constructor form of these operator classes. For
example:

* SUM: :sum(fraction*modell, model2) - Sum two or more pdfs with given relative fraction.

* PROD: :product (modelx,modely) - Multiply two uncorrelated pdfs F(x) and G(y) of observables (x,y)
in the same dataset into a joint distribution FG(x,y) = F(x)*G(y)

e SIMUL: :simpdf (index [SIG,CTL], SIG=sigModel, CTL=ct1Model) - Construct a joint model for
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to disjoint datasets that are described by distributions sigModel and ctiIModel respectively

e expr::func(’sin(a*x)+b’,a[-10,10],x%,b[-10,10]) - Construct an interpreted RooFit function
‘func’ on the fly with the given formula expression.

The syntax for operators is not native to the language, but is part of the operator class definition, which can register
custom construction expression with the factory. It is thus explicitly possible for all RooFit pdfs (both for operator and
basic pdfs) to introduce additional syntax to the factory language A comprehensive list of the operator expression of
all classes in the standard ROOT distribution of root is given here <INSERT_LINK>.

A complete example illustrate how the various language features work together to build a two-dimensional probability
model with a signal and background component

Workspace Factory

Make an extended probability density function for a distribution in m.,,

An extended probability density model is a product of a probability density function f(z) in a continuous observable
x and a Poisson model modeling the observed event count P(Nobs|Nexp)

For composite pdfs (a sum of 2 of more components) the conceptual expression
model(z, N) = Ngig * sig(z) + Npkg * bkg(x)
can be elegantly rewritten in the producy of a probability density function and Poisson
fsig = Nsig/ (Nsig + Nokg)
E = Nsig + Nokg
model(z) = fsg * sig(z) + (1 — fsig) * bkg(z)

P(N|E) = Poisson(N |E)

In [1]: RooWorkspace w("w") ;

RooFit v3.60 —— Developed by Wouter Verkerke and David Kirkby
Copyright (C) 2000-2013 NIKHEF, University of California & Stanford University
All rights reserved, please read http://roofit.sourceforge.net/license.txt

Exponential distribution for the background and Gaussian distribution for the signal

In [2]: w.factory("Exponential: :bkg(mgg[40,400],alphal[-0.01,-10,0])") ;
w.factory ("Gaussian::sig(mgg,mean[125,80,400],width([3,1,10])") ;

Fix signal shape for now

In [3]: w.var("mean")->setConstant (true) ;
w.var ("width") ->setConstant (true) ;

Model is sum of signal and background
S = 1 * Spom[200]

B = Buom[10000]

In [4]: w.factory("expr::S('muxSnom',mul[l,-3,6],Snom[50])") ;
w.factory ("SUM: :model (Sxsig,Bnom[10000] xbkg)") ;
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Sample a toy unbinned toy dataset from the model If no event count is given, the predicted count of the model is taken
(in this case S+B)

In [5]: RooDataSetx data = w.pdf ("model")->generate (*w.var ("mgg")) ;

Fit model to toy data - the extended option forces the inclusion of the Poisson term in the likelihood construction

In [6]: RooFitResultx r = w.pdf ("model")->fitTo(xdata,RooFit::Save(),RooFit: :Extended()) ;

[#1] INFO:Minization -- createNLL: caching constraint set under name CONSTR_OF_PDF_model_FOR_OBS_mgg
[#1] INFO:Minization -- RooMinimizer::optimizeConst: activating const optimization

[#1] INFO:Minization —-- The following expressions have been identified as constant and will be prec:
[#1] INFO:Minization -- The following expressions will be evaluated in cache-and-track mode: (bkg)

* ok Kk ok ok ok ok ok kk

* % 1 **xSET PRINT 1
* Kk ok ok ok k ok ok ok ok

* ok ok ok ok k ok ok kk

* x 2 **SET NOGRAD

* Kk ok k ok k ok kkk

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1 alpha -1.00000e-02 5.00000e-03 -1.00000e+01 0.00000e+00
2 mu 1.00000e+00 9.00000e-01 -3.00000e+00 6.00000e+00
* Kk ok kkk Kk k kK
* x 3 x*«SET ERR 0.5

Kok kK Kk kK ok Kk
Kok kK Kk kK kK

* % 4 x%SET PRINT 1

Kok kK Kk kK kK

Kok kK Kk kK kK

* * 5 *xSET STR 1

Kok ok kK kK kK K

NOW USING STRATEGY 1: TRY TO BALANCE SPEED AGAINST RELIABILITY

Kok kK Kk kK ok Kk

* 6 **MIGRAD 1000 1

Kok kK Kk kK kK

FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4.

START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03

FCN=-27531.8 FROM MIGRAD STATUS=INITIATE 10 CALLS 11 TOTAL
EDM= unknown STRATEGY= 1 NO ERROR MATRIX
EXT PARAMETER CURRENT GUESS STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 alpha -1.00000e-02 5.00000e-03 1.63770e-02 -1.52597e+01
2 mu 1.00000e+00 9.00000e-01 2.02684e-01 -2.10238e+00

ERR DEF= 0.5
MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.
COVARIANCE MATRIX CALCULATED SUCCESSFULLY

FCN=-27531.8 FROM MIGRAD STATUS=CONVERGED 27 CALLS 28 TOTAL
EDM=9.49644e-06 STRATEGY= 1 ERROR MATRIX ACCURATE

EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE

1 alpha -9.99923e-03 1.26457e-04 4.58294e-05 -6.74097e+00

2 mu 1.09775e+00 4.59302e-01 1.16765e-02 -1.41907e-02

ERR DEF= 0.5

EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 2 ERR DEF=0.5

1.599e-08 7.395e-07
7.395e-07 2.117e-01
PARAMETER CORRELATION COEFFICIENTS
NO. GLOBAL 1 2
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1 0.01271 1.000 0.013
2 0.01271 0.013 1.000

Ak Kk kKkKk kKKK

* % 7 *xSET ERR 0.5
Kk ok hkkk Kk k kK

* Kk ok ok ok k ok ok ok ok

* x 8 x*SET PRINT 1
Kk kkkkkk kK

* Kk ok ok ok kkk ok ok

* % 9 *x+«HESSE 1000

*k Kk kK Kk kK kK

COVARIANCE MATRIX CALCULATED SUCCESSFULLY

FCN=-27531.8 FROM HESSE STATUS=0K 10 CALLS 38 TOTAL
EDM=9.49203e-06 STRATEGY= 1 ERROR MATRIX ACCURATE

EXT PARAMETER INTERNAL INTERNAL
NO. NAME VALUE ERROR STEP SIZE VALUE

1 alpha -9.99923e-03 1.26456e-04 9.16588e-06 1.50754e+00

2 mu 1.09775e+00 4.59294e-01 4.67062e-04 -8.95073e-02

ERR DEF= 0.5

EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 2 ERR DEF=0.5

1.599e-08 7.372e-07
7.372e-07 2.117e-01
PARAMETER CORRELATION COEFFICIENTS
NO. GLOBAL 1 2
1 0.01267 1.000 0.013
2 0.01267 0.013 1.000
[#1] INFO:Minization —-- RooMinimizer::optimizeConst: deactivating const optimization

Visualize result

In [7]: TCanvas* cl = new TCanvas|();
RooPlotx frame = w.var ("mgg")->frame () ;
data->plotOn (frame) ;

When plotting an extended pdf you can choose to follow intrinsic prediction for the event count, rather than normaliz-
ing the plot to the observed data

To do so request a normalization scale factor 1.0 w.r.t the intrinsic expecation
In [8]: w.pdf ("model")->plotOn (frame,RooFit: :Normalization(1l.0,RooAbsReal: :RelativeExpected)) ;
You can also highlight components of the fit as follows

In [9]: w.pdf ("model")->plotOn (frame, RooFit: :Normalization(1l.0,RooAbsReal: :RelativeExpected), RooFit:
frame->Draw () ;
cl->Draw () ;
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A RooPlot of "mgg"
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[#1] INFO:Plotting —-- RooAbsPdf::plotOn(model) directly selected PDF components: (bkg)
[#1] INFO:Plotting —-- RooAbsPdf::plotOn (model) indirectly selected PDF components: ()

Now save the workspace with the data a modelconfig so that you can use RooStats to extract limits

Save the generated data as the ‘observed data’

In [10]: w.import (+xdata,RooFit: :Rename ("observed_data"))
[#1] INFO:ObjectHandling —-- RooWorkspace::import (w) importing dataset modelData
[#1] INFO:0bjectHandling —-- RooWorkSpace::import (w) changing name of dataset from modelData to obse:

Create an empty ModelConfig
In [11]: RooStats::ModelConfig mc("ModelConfig", &w);
Define the pdf, the parameter of interest and the observables

In [12]: mc.SetPdf (»w.pdf ("model™));
mc.SetParametersOfInterest (xw.var ("mu"));
//mc.SetNuisanceParameters (RooArgSet (*w.var ("mean"), »w.var ("width"), *w.var ("alpha")));

mc.SetNuisanceParameters (xw.var ("alpha"));
mc.SetObservables (xw.var ("mgg") ) ;

Define the current value mu (1) as an hypothesis

In [13]: w.var("mu")->setVal(l) ;
mc.SetSnapshot (xw.var ("mu")) ;

mc.Print ();

=== Using the following for ModelConfig ===
Observables: RooArgSet:: = (mgg)

3.1. RooFit 29



RooStatsWorkbook Documentation

Parameters of Interest: RooArgSet:: = (mu)
Nuisance Parameters: RooArgSet:: = (alpha)
PDF': RooAddPdf::model[ S * sig + Bnom x bkg ] = 0.110271
Snapshot:
1) 0x7f1a20b9fa80 RooRealVar:: mu = 1 +/- 0.459294 L(-3 - 6) "mu"

import model into the workspace and save to file

In [14]: w.import (mc);

w.writeToFile ("model.root") ;

Build workspace using histogram templates

Build a binned likelihood model version of the ex11 example
* construct a histogram template SH(mgg) with a prediction for the binned signal shape
* construct a histogram template BH(mgg) with a prediction for the binned background shape
* construct a probability model model(mgg) = SH(mgg) + BH(mgg)
This model can be ‘seen’ in two ways
1. an extended probability model like ex11 that happen to have binned shapes, i.e.
* model(myy) = Nsig/Nsig+Nbkg * pdfSH(m~~) + Nbkg/Nsig+Nbkg * pdfBH(m~y)
* P(N) = Ngig + Noig
» where pdf_SH,pdf_BH are probability density functions that follow shape of the unit normalized histograms
2. A product of Poisson counting experiments for each bin
* model(vec_N) = Product(i=0..n-1) Poisson(N_i | S_i + B_i)

e where N_i i=0...N-1 == vec_N are the observed event counts in each bin and S_i and B_i are the predicted
signal and background rate in each bin

Both representations are mathematically equivalent, but expression (2) is in practice faster to calculate because it does
not require a normalization calculation over pdf_SH and pdf BH to happen. While for this very simple example it
does not make a noticable difference because the normalization does not depend on any model parameters in scenarios
where it does it will effectivelt double the calculation time

Construct simulation workspace to generate template histograms
In [1]: RooWorkspace wsim("wsim")

RooFit v3.60 —- Developed by Wouter Verkerke and David Kirkby
Copyright (C) 2000-2013 NIKHEF, University of California & Stanford University
All rights reserved, please read http://roofit.sourceforge.net/license.txt

Generate two distributions, exponential distribution for the background, Gaussian distribution for the signal
In [2]: wsim.factory ("Exponential::bkg(mgg[40,400],alpha[-0.01,-10,0])") ;
wsim.factory ("Gaussian::sig(mgg,mean[125,80,400],width[3,1,10])")

RooDataHistx hist_sig = wsim.pdf ("sig")->generateBinned (*wsim.var ("mgg"),50) ;
RooDataHistx hist_bkg = wsim.pdf ("bkg")->generateBinned (*wsim.var ("mgg"),10000) ;
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Mock data distribution with mu=1.5

In [3]:

wsim.factory ("expr:

:S('muxSnom',mul[l.5],Snom[50])") ;

wsim.factory ("SUM: :model (S+«sig, Bnom[10000] xbkg) ")

Given that the sum is an extended model, no speficiation of the event count is needed

In [4]:

Set up binned likelihood model

In [5]:

RooWorkspace w("w

")

First Import template and mock data histograms

In [6] w

%

w
[#1] INFO:
[#1] INFO:
[#1] INFO:
[#1] INFO:
[#1] INFO:
[#1] INFO:
[#1] INFO:

Now build signal and background models

Note that we build functions here and not pdfs

In [7]:

[#1]
[#11]

w.factory ("HistFunc::sig(mgg, template_sig)")

w.factory ("HistFunc: :bkg (mgg, template_bkg) ")

INFO:0bjectHandling —-- RooWorkspace: :import (w)
INFO:0bjectHandling ——- RooWorkspace: :import (w)

RooDataHistx hist_data = wsim.pdf ("model")->generateBinned (xwsim.var ("mgg")) ;

.import (rhist_sig, RooFit::Rename ("template_sig")) ;

.import (xhist_bkg, RooFit: :Rename ("template_bkg")) ;

.import (xhist_data, RooFit: :Rename ("observed_data")) ;

ObjectHandling —-- RooWorkspace::import (w) importing dataset genData

ObjectHandling —-- RooWorkSpace::import (w) changing name of dataset from genData to templat
ObjectHandling —-- RooWorkspace::import (w) importing RooRealVar::mgg

ObjectHandling -- RooWorkspace::import (w) importing dataset genData

ObjectHandling —-- RooWorkSpace: :import (w) changing name of dataset from genData to templat
ObjectHandling —- RooWorkspace::import (w) importing dataset genData

ObjectHandling -- RooWorkSpace::import (w) changing name of dataset from genData to obserwve

;

’
importing dataset template_sig
importing dataset template_bkg

Also not that we don’t need to declare mgg here, its definition was imported when we imported the histograms

Now construct a ‘amplitude sum’ probability model, defined asa

pdf (z) =

Csig * histgig () + kg * histpkg ()

Csig * SUM (histgig ()) + cbrg * SUM (histpig())

here : math : ‘csg‘and : math : ‘cpig‘arecoef ficients

scaling the predictions of the template histograms. If the template histograms encode the nominal event yield, one
expects both coefficients to fit to 1 if the data matches the prediction

NOTE: If the bin width is not equal to one then the event count of a histogram is not identical to the integral over a
histogram. In RooFit the **integral* over the histogram is taken as the yield prediction, whereas one usually, interprets
the histogram event count as the prediction. The simplest way to correct for this is to multiply ¢; with a constant which
is 1/binwidth*

In this case we choose csjz = 1 (as usual) and introduce a Bscale as a nuisance parameter that can freely scale the
background

In

[#11]

[8]:

5 = 5 %

INFO:

Fit the binned probability model to the binned data

.factory ("binw[0.2771") ; // == 1/(400-30)

.factory ("expr::S('muxbinw',mull,-1,6],binw[0.277])") ;

.factory ("expr::B('Bscalexbinw',Bscale[0,6],binw)")

.factory ("ASUM: :model (Sxsig, Bxbkg)") ;

ObjectHandling —-- RooWorkSpace::import (w) Recycling existing object binw created with ident
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In [9]: w.pdf ("model")->fitTo(xhist_data) ;
TCanvas* cl = new TCanvas();
RooPlot* frame = w.var ("mgg")->frame () ;
hist_data->plotOn (frame) ;
w.pdf ("model") -—>plotOn (frame) ;
w.pdf ("model") ->plotOn (frame, RooFit: :Components ("bkg"),RooFit::LineStyle (kDashed)) ;
frame->Draw () ;
cl->Draw();

[#1] INFO:Minization —-- p.d.f. provides expected number of events, including extended term in likelil
[#1] INFO:Minization -- createNLL: caching constraint set under name CONSTR_OF_PDF_model_FOR_OBS_mgg
[#1] INFO:Minization -- RooMinimizer::optimizeConst: activating const optimization

[#1] INFO:Minization —-- The following expressions have been identified as constant and will be prec:

* ok ok ok kk ok ok k Kk

* K 1 *xSET PRINT 1
* Kk ok ok kkkk ok ok

* h ok ok kk ok ok kk

* x 2 **SET NOGRAD

* Kk ok kkkkk ok ok

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1 Bscale 3.00000e+00 6.00000e-01 0.00000e+00 6.00000e+00
2 mu 1.00000e+00 7.00000e-01 -1.00000e+00 6.00000e+00
* Kk ok kkk Kk kkk
* x 3 x*%SET ERR 0.5
Kk hkhkkk Kk k kK
* Kk ok kkk Kk kkk
* % 4 x%SET PRINT 1
Kk hkhkkk Kk kkk
* Kk ok kkkkkk Kk
* % 5 *xSET STR 1

* ok ok kK k kK kK

NOW USING STRATEGY 1: TRY TO BALANCE SPEED AGAINST RELIABILITY

Kk ok ok kK kkkkk

* 6 **MIGRAD 1000 1

Ak Kk hkKkKk kKKK

FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4.

START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03

FCN=-18731 FROM MIGRAD STATUS=INITIATE 6 CALLS 7 TOTAL
EDM= unknown STRATEGY= 1 NO ERROR MATRIX
EXT PARAMETER CURRENT GUESS STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 Bscale 3.00000e+00 6.00000e-01 2.01358e-01 1.98597e+04
2 mu 1.00000e+00 7.00000e-01 2.24553e-01 9.86124e+01

ERR DEF= 0.5
MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.
COVARIANCE MATRIX CALCULATED SUCCESSFULLY

FCN=-27643.4 FROM MIGRAD STATUS=CONVERGED 63 CALLS 64 TOTAL
EDM=1.90326e-05 STRATEGY= 1 ERROR MATRIX ACCURATE

EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE

1 Bscale 1.00258e+00 1.02810e-02 5.15767e-04 -9.00358e-01

2 mu 1.54130e+00 4.86712e-01 1.62486e-02 -1.71092e-02

ERR DEF= 0.5

EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 2 ERR DEF=0.5

1.057e-04 -1.035e-03
-1.035e-03 2.386e-01
PARAMETER CORRELATION COEFFICIENTS
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NO. GLOBAL 1 2
1 0.20612 1.000 -0.206
2 0.20612 -0.206 1.000
Kk ok k ok ok ok ok Kk
* % 7 *xSET ERR 0.5

Kk K kK kK ok Kk
Kk Kk Kk Kk Kk
8 xxSET PRINT 1

kKR KkKk Kk kKK

* x

* ok ok ok ok ok ok ok ok ok
9 x+xHESSE
* Kk ok ok ok k ok ok ok ok

COVARIANCE MATRIX CALCULATED SUCCESSFULLY

1000

* *

FCN=-27643.4 FROM HESSE STATUS=0K 10 CALLS 74 TOTAL
EDM=1.90282e-05 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER INTERNAL INTERNAL
NO. NAME VALUE ERROR STEP SIZE VALUE
1 Bscale 1.00258e+00 1.02822e-02 1.03153e-04 -7.28574e-01
mu 1.54130e+00 4.86745e-01 3.24972e-03 -2.77461e-01
ERR DEF= 0.5
EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 2 ERR DEF=0.5
1.057e-04 -1.038e-03
-1.038e-03 2.386e-01
PARAMETER CORRELATION COEFFICIENTS
NO. GLOBAL 1 2
1 0.20664 1.000 -0.207
2 0.20664 -0.207 1.000
[#1] INFO:Minization -- RooMinimizer::optimizeConst: deactivating const optimization
[#1] INFO:Plotting —-- RooAbsPdf::plotOn(model) directly selected PDF components: (bkg)
[#1] INFO:Plotting —-- RooAbsPdf::plotOn(model) indirectly selected PDF components: ()
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A RooPlot of "mgg"
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Now save the workspace with the data a modelconfig so that you can use RooStats to extract limits
Create an empty ModelConfig

In [10]: RooStats::ModelConfig mc("ModelConfig", &w);

Define the pdf, the parameter of interest and the observables

In [11]: mc.SetPdf (xw.pdf ("model™));
mc.SetParametersOfInterest (xw.var ("mu"));
//mc.SetNuisanceParameters (RooArgSet (#w.var ("mean"), »w.var ("width"), »w.var ("alpha")));
mc.SetNuisanceParameters (xw.var ("Bscale"));
mc.SetObservables (xw.var ("mgg")) ;

Define the current value ;1 = 1 as an hypothesis

In [12]: w.var ("mu")->setvVal(l) ;
mc.SetSnapshot (»w.var ("mu") ) ;

mc.Print ();

=== Using the following for ModelConfig ===

Observables: RooArgSet:: = (mgg)

Parameters of Interest: RooArgSet:: = (mu)

Nuisance Parameters: RooArgSet:: = (Bscale)

PDF': RooRealSumPdf::model[ S « sig + B  bkg ] = 2.77715
Snapshot:

1) Ox7fed4dcal0cd80 RooRealVar:: mu = 1 +/- 0.486745 L(-1 - 6) "mu"

import model in the workspace
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In [13]: w.import (mc);

w.writeToFile ("model.root") ;
A couple of final important points on RooFit models and workspace

» The factory is an efficient way to quickly express what RooFit objects should be instantiated. Objects built with
the factory

are not in any way different from those created ‘manually’ and then imported into the workspace.

* All objects (wether created through the factory or imported) can be modified a posteriori, e.g. modification of
advanced

settings from class methods, after they have been created and/or imported. All such changes in settings are persisted
with the workspace. The factory does therefore on purpose not provide an interface for such modifications.

* All RooFit objects in a workspace should have unique names. The factory and import methods automatically
enforce this

3.2 Building joint models and data structures

3.2.1 the general case

When building joint probability models for multiple datasets, e.g. simultaneous fits or profile likelihood models in
general, there are some important point to consider when building the model. In the RooFit paradigm such joint fits
are best constructed by first joining all independent datasets together into a single composite ‘master’ dataset, and by
joining all probability models corresponding to the individual datasets into a composite ‘master’ probability model. If
it is done this way, all main statistical operations ranging from basic operations like fitting and toy data generation to
advanced limit setting procedures work on composite models with exactly the same interface as for simple models.
This design choices greatly simplifies the syntax of the high level statistical tools, but introduces some additional
syntax to express composite datasets and probability models, which are discussion in this section.

Joining probability models for disjoint datasets

A joint probability model that simultaneously describes two or more disjoint datasets is represented in RooFit by class
RooSimultaneous, which is constructed in the factory with the SIMUL operator:

// Construct joint model for signal region and a control region

// This example assumes a pdf sigModel and ctlModel were previously defined
// in the workspace (the internal structure of these models is irrelevant)
//

w.factory ("SIMUL: :master (index[SIG,CTL], SIG=sigModel, CTL=ct1lModel) ") ;

The code above generates two new objects

* A new discrete observable (class RooCategory) named ‘index’ that has two defined states: SIG and CTL that
serves

as additional observable to the newly create pdf master (in addition to the observables defined in sigModel and
ctiModel). The role of this observable is to indicate which component pdf should be used to interpret the remain-
ing observables in the dataset

* A new joint probability model master that describes both distributions. Suppose sigModel describes the distri-
bution

of observable x and ctIModel describes the distribution of observable y, then the observables of the joint model are
{index, x, y}
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Joining disjoint datasets into a master dataset

The joint dataset that is needed to construct a likelihood from ‘master’ model must thus also conform to this structure:
it’s observable must include both x and y, as well as the discrete index variable to label to which component dataset
each event belongs. It is instructive to first consider visually what this data organization entails

D (x) D(y) D (index, x,V)
1.5 23 SIG, 1.5, -
2.3 17 -—> SIG, 2.3, -
4.7 98 SI1G, 4.7, -
cTL, -, 23
cT., -, 17
cTL, - , 98

The joining of datasets is trivially perform in the RooDataSet constructor

// The example assume this existence of a workspace that defines variable, x,y,index

// Construct a dataset D (x)

RooDataSet d_sig("d_sig","d_sig",»w.var("x")) ;
w.var ("x")->setValue (1.5) ;
d_sig.add (*w.var ("x")) ; // fill data, etc..

// Construct a dataset D (y)

RooDataSet d_ctl("d_ctl","d_ctl",*xw.var("y")) ;
w.var ("y")->setValue (23) ;

d_ctl.add (sw.var ("xy")) ; // fill data, etc..

// Construct a joint dataset D (index,x,y)
map<string, RooDataSet*> dmap;

dmap ["SIG"]=&d_sig ;

dmap ["CTL"]=&d_ctl ;

RooDataSet d_joint ("d_joint","d joint",Index(xw.cat ("index")), Import (dmap)) ;

Note that while a composite RooDataSet externally presents the interface of a simple dataset with observables (in-
dex,x,y) it is internally organised in subdatasets for efficient storage and data retrieval

D (index, x,V) D (index, x,V)

SIG, 1.5, - index==SIG index==CTL
SIG, 2.3, - D (x) D (y)
SI1G, 4.7, - —> 1.5 23
cTL, -, 23 2.3 17

cTt., -, 17 4.7 98

CTL, - , 98

This internal data organization is also introduced for toy data sets that are sampled from composite datasets.
Working with joint models and datasets

Once the joint model master(index,X,y) and a joint dataset D(index,X,y) are constructed, all operations work exactly as
for simple models. For example, a joint fit is trivially performed as follows

w.pdf ("master")->fitTo(d_joint) ;

An important part of the design of joint models is that there is no performance loss due to computation overhead in the
joint construction: when the joint likelihood is constructed from a joint model and dataset, it is internally organised
again in component likelihoods, where each component model of master is match to the corresponding component
dataset of d_joint, and subsequently separately optimised for computational efficiency.
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3.2.2 profile likelihood models & global observables

While the interface described in the previous sections works for joint models of any shape and form, a dedicated
syntax exists for the formulation of so-called ‘profile likelihood” models. The key difference between a generic joint
model and a ‘profile likelihood’ joint model is that in the latter the internal structure of the control region (now named
‘subsidiary measurement’ is simplified to a Gaussian, Poisson or LogNormal distribution so that the corresponding
observation can be represented by a single number, where the convention of the subsidiary measurement is furthermore
chosen such, through a suitable transformation of the meaning of the parameters, that the observed values is either
always zero or one

Ejoint (pa Q) = Esig(xsig‘ﬂv 0) * Lctl(yctl|0)

J
Eproﬁlc(,u» CK) = Csig(xsig|u7 a) * ‘Csubs(0|a)

Such likelihood can in principle be described with a joint dataset D‘(index,: math : ‘24g,0,0,....0) and a corre-
sponding SIMUL probability model with equally many components, but the carrying around of hundreds of observed
values that are always identical to zero can be cumbersome.

Hence an alternative formulation style exists in RooFit that is specifically suitable for profile likelihood models - here
the observed value of the subsidiary measurements is simply encoded in observable variable of the pdf itself, rather
than in an external dataset. Hence instead of a dataset/model pair in traditional joint format

Dsimul(indeX7 Tsigy Yctl == O)

and

pdfsimul(indexa Tsig, yct1|ﬂa Oé) = pdfsig (xSig|M7 Oé) * pdfsubs(yctl|a)

one writes
Deimul (Tsig)
and
PAf i (Tsig, Yet1 == 0|p, o) = pdfig (wsig|pr, @) * pdfyps (0]ar)
where the observable y.;; == 0 is dropped from the dataset, as well as the index observable, as it is no longer needed

to distinguish between data belonging to the main measurement and the subsidiary measurement(s). This greatly
simplifies the formulation of datasets of profile likelihood models. On the probability model side, the formulation then
changes as follows

¢ Instead of using SIMUL () to multiply subsidiary measurements with the main measurement, the PROD ()
operator

is used, which does not require the introduction of an index observable to label events
* The model variables that represent the subsidiary measurements must be explicitly labeled in the object as such

(to distinguish these from parameters). This can be either done intrinsically in the model, or this specification can be
provided externally when an operation (fit, toyMC generation etc) is performed

In the LHC jargon the variables in the model that represent the (trivial) values of the observables of the subsidiary
measurements are named the “Global Observables”. The easiest-to-use way to mark global observables in the model
is to label them as such
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// repeat for each global observable
w.var (“obs_alpha”)->setAttribute ("MyGlobalObservable”)

// advertise string label used to mark global observables in the top-level pdf object
w.pdf ("“master”)->setStringAttribute (“"GlobalObservablesTag”,”MyGlobalObservable”) ;

Most modeling building tools currently in use, do not yet take advantage to label these observables as such in the model.
Instead it is common practice, to specify these always external through a GlobalObservables () command-
line specification when fitting or generation. To simplify this external specification process for RooStats tools, the
ModelConfig interface object allows the global observables to be specified there, so that its definition is always
consistently used by all RooStats tools.

// Define the pdf, the parameter of interest and the observables
mc.SetPdf (»w.pdf (Yp"));

mc.SetParametersOfInterest (xw.var ("mu"));
mc.SetGlobalObservables (..... ) ;
mc.SetObservables (xw.var (“*n"));

Any code that works with profile likelihood that wishes this external specification of the global observables, in addition
to the internal specifications must incorporate some explicit handling of thus. Here is a modified version of the run_fit()
macro of the previous section that does so

void run_fit (const charx workspaceName, def run_fit (workspaceName, datasetName) :
—const char+ datasetName) ({

# Reviving a model from a workspace
// Reviving a model from a workspace f = ROOT.TFile.Open ("model.root")
TFilex £ = TFile::0Open("model.root") w = f.Get (workspaceName)
[ mc = w.genobj ("ModelConfig")
RooWorkspacex w = (RooWorkspacex) f-—> pdf = w.pdf (mc.GetPdf () .GetName () )
—Get ("w") globs = mc.GetGlobalObservables ()
RooStats:::ModelConfigx mc =
— (RooStats: :ModelConfig*) w->genobij ( # Load data from workspace
—"ModelConfig") ; data = w.data (datasetName)
RooAbsPdf* pdf = w->pdf (mc—>GetPdf () -
—>GetName () ) ; if pdf is None or data is None: |
RooArgSet* globs = mc—> —return None
—GetGlobalObservables () ;
if globs:
// Load data from workspace pdf.fitTo (data, ROOT.RooFit.
RooAbsDatax data = w—> —GlobalObservables (globs))
—data (datasetName) ; else:

pdf.fitTo (data)

if (!pdf || !data) return ; X
Open in gy SWAN

if (globs) {
pdf->fitTo (xdata,
—~GlobalObservables (xglobs)) ;
} else {
pdf->fitTo (xdata)
}

Open in ¢y SWAN

The processing of intrinsic global variable specifications is always automatic, but unfortunately it’s use is not common
practice yet in LHC models.
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3.3 Tools for model building and model manipulation

List of available tools [ Combiners, HistFactory, HistFitter, etc. .. ]

3.3.1 HistFactory

A histfactory model is built as follows
* A channel is modeled by a stack of samples (signal, backgrounds)
* A measurement is composed of one or more channels

In [1]: using namespace RooStats;
using namespace HistFactory;

Create the measurement

In [2]: std::string inputFileName = "./input/example.root";
HistFactory: :Measurement meas ("meas", "meas");
meas.SetOutputFilePrefix ( "./results/example_" );

RooFit v3.60 —- Developed by Wouter Verkerke and David Kirkby

Copyright (C) 2000-2013 NIKHEF, University of California & Stanford University
All rights reserved, please read http://roofit.sourceforge.net/license.txt

Define the name of the POI
In [3]: meas.SetPOI ("mu");
Declare constants

In [4]: meas.AddConstantParam("alpha_systl");
meas.AddConstantParam ("Lumi") ;

Set luminosity and its uncertainty

In [5]: meas.SetLumi(1.0);
meas.SetLumiRelErr (0.10);

...and some technical configuration. ..

In [6]: meas.SetExportOnly (false);
meas.SetBinHigh (2);

Create a channel

In [7]: HistFactory::Channel chan("channell");
chan.SetData ("data", inputFileName) ;
chan.SetStatErrorConfig(0.05, "Poisson");

Populate this channel with samples
Signal sample - scaled by a normalization factor x and with a 5% systematic scale uncertainty named syst1

In [8]: HistFactory::Sample sig( "signal", "signal", inputFileName ) ;
sig.AddOverallSys("syst1",0.95,1.05) ;
sig.AddNormFactor ("mu",1,0,3 ) ;
chan.AddSample (sig) ;
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Background sample 1 - with a 5% systematic scale uncertainty named syst2 and with modeling of MC statistical,
uncertainties

In [9]: HistFactory::Sample backgroundl ("backgroundl", "backgroundl", inputFileName) ;
backgroundl.ActivateStatError ("backgroundl statUncert",inputFileName) ;
backgroundl.AddOverallSys ("syst2",0.95,1.05) ;
chan.AddSample (backgroundl) ;

Background sample 2 - with a 5% systematic scale uncertainty named syst3 - and with modeling of MC statistical
uncertainties

In [10]: HistFactory::Sample background2( "background2", "background2", inputFileName );
background2.ActivateStatError () ;
background2.AddOverallSys ("syst3",0.95,1.05);
chan.AddSample ( background2) ;

Add channel to the measurementa

In [11]: meas.AddChannel ( chan );

Collect all the required templated histograms from the input file
In [12]: meas.CollectHistograms () ;

Getting histogram. InputFile ./input/example.root HistoPath HistoName data

Opened input file: ./input/example.root: 0x7£507c3030f0

Collecting Nominal Histogram

Getting histogram. InputFile ./input/example.root HistoPath HistoName signal
Opened input file: ./input/example.root: 0x7f£507c510350

Collecting Nominal Histogram

Getting histogram. InputFile ./input/example.root HistoPath HistoName backgroundl
Opened input file: ./input/example.root: 0x7£507c419120

Getting histogram. InputFile ./input/example.root HistoPath HistoName backgroundl_statUncert
Opened input file: ./input/example.root: 0x7£507c¢5111b0

Collecting Nominal Histogram

Getting histogram. InputFile ./input/example.root HistoPath HistoName background2
Opened input file: ./input/example.root: 0x7£507c53c950

Now build a workspace with a pdf and a modelconfig
In [13]: RooWorkspacex w = MakeModelAndMeasurementFast (meas) ;

Making Model and Measurements (Fast) for measurement: meas
using lumi = 1 and lumiError = 0.1 including bins between 0 and 2
fixing the following parameters:

alpha_systl

Lumi
Checking if output directory : ./results - exists
Creating the output file: ./results/example__meas.root

Creating the table file: ./results/example__results.table
Creating the HistoToWorkspaceFactoryFast factory

Setting preprocess functions

Starting to process channel: channell

Starting to process channell channel with 1 observables

lumi str = [1,0,10]
lumi Error str = nominalLumi[1,0,2],0.1
[#1] INFO:ObjectHandling —-- RooWorkspace::import (channell) importing RooStats::HistFactory::Flexible:

making normFactor: mu
signal_channell has no variation histograms
processing hist signal
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[#1]
[#1]
[#1]
[#1]

INFO:DataHandling —-- RooDataHist::adjustBinning(signal_channellnominalDHist) :
INFO:0bjectHandling —— RooWorkspace: :import (channell)
INFO:0bjectHandling -- RooWorkspace: :import (channell)
INFO:0bjectHandling —-- RooWorkspace::import (channell)

backgroundl_channell has
processing hist backgroundl

no

variation histograms

fit range

of vari:

importing dataset signal_channellnominalD]

importing RooHistFunc::signal_channell_nor
importing RooStats::HistFactory::Flexible:

[#1] INFO:DataHandling —-- RooDataHist::adjustBinning (backgroundl_channellnominalDHist): fit range of
[#1] INFO:ObjectHandling —-- RooWorkspace::import (channell) importing dataset backgroundl_channellnom:
[#1] INFO:0bjectHandling —- RooWorkspace::import (channell) importing RooHistFunc::backgroundl_channe:
Sample: backgroundl to be included in Stat Error for channel channell

Using external histogram for Stat Errors for

Error Histogram: backgroundl_statUncert

[#11]
[#1]
[#1]
[#1]
[#1]
[#1]
[#1]
[#1]
[#1]
[#11]
[#1]
[#1]
[#11]
[#1]
[#1]
[#11]

INFO:
INFO:
:ObjectHandling
:ObjectHandling
INFO:
INFO:
INFO:
INFO:
INFO:
INFO:
INFO:
INFO:
INFO:
INFO:
INFO:
INFO:

INFO
INFO

ObjectHandling
ObjectHandling

ObjectHandling
ObjectHandling
ObjectHandling
ObjectHandling
ObjectHandling
ObjectHandling
ObjectHandling
ObjectHandling
ObjectHandling
ObjectHandling
ObjectHandling
ObjectHandling

background2_channell has
processing hist background2

no

RooWorkspace:
RooWorkspace:
RooWorkspace:
RooWorkspace:
RooWorkspace:
RooWorkspace:
RooWorkspace:
RooWorkspace:
RooWorkspace:
RooWorkspace:
RooWorkspace:
RooWorkspace:
RooWorkspace:
RooWorkspace:
RooWorkspace:
RooWorkspace:
variation histograms

Channel:

:import (channell
:import (channell
:import (channell
:import (channell
:import (channell
:import (channell
:import (channell
:import
:import
:import (channell
:import (channell
:import (channell
:import (channell
:import (channell
:import (channell
:import (channell

channell
channell

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

channell Sample:

backgroundl

importing RooRealVar::gamma_stat_channell.
importing RooRealVar::gamma_stat_channell.
importing ParamHistFunc: :mc_stat_channell
using existing copy of RooRealVar
using existing copy of RooRealVar
using existing copy of RooRealVar
importing RooProduct: :backgroundl

using
using
using
using
using
using
using
using

importing RooStats::

existing
existing
existing
existing
existing
existing
existing
existing

Copy
copy
Ccopy
Copy
copy
copy
Copy
copy

of
of
of
of
of
of
of
of

ParamHistF

RooRealVar:

RooRealVar
RooRealVar
RooProduct
RooHistFun
RooStats::
RooRealVar

::10bs_X_
: rgamma_
:rgamma_
_channel!
Unc: :mc_:
:obs_x_«
: rgamma_
: rgamma_
: :backgr
c: :backag:
HistFactc«
::ralpha_:

HistFactory::Flexible!

[#1] INFO:DataHandling —-- RooDataHist::adjustBinning (background2_channellnominalDHist): fit range of
[#1] INFO:ObjectHandling —-- RooWorkspace::import (channell) importing dataset background2_channellnom:
[#1] INFO:0bjectHandling —- RooWorkspace::import (channell) importing RooHistFunc::background2_channe:
Sample: background2 to be included in Stat Error for channel channell

Making Statistical Uncertainty Hist for Channel: channell Sample: background2

[#1] INFO:0bjectHandling —- RooWorkspace::import (channell) importing RooProduct: :background2_channel:
[#1] INFO:ObjectHandling —-- RooWorkspace::import (channell) using existing copy of ParamHistFunc: :mc_:
[#1] INFO:ObjectHandling —-- RooWorkspace::import (channell) using existing copy of RooRealVar::obs_x_«
[#1] INFO:0bjectHandling —- RooWorkspace::import (channell) using existing copy of RooRealVar::gamma_:
[#1] INFO:ObjectHandling —-- RooWorkspace::import (channell) using existing copy of RooRealVar::gamma_ :
[#1] INFO:ObjectHandling —-- RooWorkspace::import (channell) using existing copy of RooProduct: :backgr
[#1] INFO:0bjectHandling —- RooWorkspace::import (channell) using existing copy of RooHistFunc: :backg:
[#1] INFO:ObjectHandling —-- RooWorkspace::import (channell) using existing copy of RooStats::HistFact«
[#1] INFO:ObjectHandling —-- RooWorkspace::import (channell) using existing copy of RooRealVar::alpha_:
Making Total Uncertainty for bin 1 Error = 5 Val = 100 RelativeError = 0.05

Making Total Uncertainty for bin 2 Error = 10 Val = 100 RelativeError = 0.1

About to create Constraint Terms from:

Using Poisson StatErrors

Creating constraint for:
[#1] INFO:ObjectHandling
[#1] INFO:0bjectHandling
[#1] INFO:ObjectHandling
[#1] INFO:ObjectHandling
[#1] INFO:0bjectHandling
Creating constraint for:
[#1] INFO:ObjectHandling
[#1] INFO:0bjectHandling
[#1] INFO:ObjectHandling
[#1] INFO:ObjectHandling

in channel: channell
gamma_stat_channell_bin_0.

—— RooWorkspace: :import (channell
—— RooWorkspace: :import (channell
—-— RooWorkspace: :import (channell
—— RooWorkspace: :import (channell
—— RooWorkspace: :import (channell
gamma_stat_channell_bin_1.

—— RooWorkspace: :import (channell
—— RooWorkspace: :import (channell
—— RooWorkspace: :import (channell
—— RooWorkspace: :import (channell

)
)
)
)
)

)

)
)
)

mc_stat_channell params:

Type of constraint: 1

(gamma_stat_channell_bin_0, gamma_stat

importing RooPoisson::gamma_stat_channell.
importing RooRealVar::nom_gamma_stat_chani
importing RooProduct: :gamma_stat_channell.
using existing copy of RooRealVar::gamma_:
importing RooConstVar::gamma_stat_channel:

Type of constraint: 1

importing RooPoisson::gamma_stat_channell.
importing RooRealVar::nom_gamma_stat_chani
importing RooProduct: :gamma_stat_channell.
using existing copy of RooRealVar::gamma_:
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[#1] INFO:0bjectHandling —- RooWorkspace::import (channell) importing RooConstVar::gamma_stat_channel:
[#1] INFO:0bjectHandling —-- RooWorkspace::import (channell) importing RooRealSumPdf::channell_model
import model into workspace

[#1] INFO:0bjectHandling RooWorkspace: :import (channell) importing RooProdPdf::model_channell

[#1] INFO:0bjectHandling RooWorkspace: :import (channell) using existing copy of RooGaussian::lumiC
[#1] INFO:ObjectHandling RooWorkspace: :import (channell) using existing copy of RooConstVar::0.1 £«
[#1] INFO:ObjectHandling RooWorkspace: :import (channell) using existing copy of RooRealVar::Lumi £«
[#1] INFO:0bjectHandling RooWorkspace: :import (channell) using existing copy of RooRealVar::nomina:
[#1] INFO:0bjectHandling RooWorkspace: :import (channell) using existing copy of RooGaussian::alpha.
[#1] INFO:ObjectHandling RooWorkspace: :import (channell) using existing copy of RooConstVar::1 for
[#1] INFO:0bjectHandling RooWorkspace: :import (channell) using existing copy of RooRealVar::alpha_:
[#1] INFO:0bjectHandling RooWorkspace: :import (channell) using existing copy of RooRealVar::nom_alg
[#1] INFO:ObjectHandling RooWorkspace: :import (channell) using existing copy of RooGaussian::alpha.
[#1] INFO:0bjectHandling RooWorkspace: :import (channell) using existing copy of RooRealVar::alpha_:
[#1] INFO:0bjectHandling RooWorkspace: :import (channell) using existing copy of RooRealVar::nom_alg
[#1] INFO:ObjectHandling RooWorkspace: :import (channell) using existing copy of RooGaussian::alpha.
[#1] INFO:0bjectHandling RooWorkspace: :import (channell) using existing copy of RooRealVar::alpha_:
[#1] INFO:ObjectHandling RooWorkspace: :import (channell) using existing copy of RooRealVar::nom_alg
[#1] INFO:ObjectHandling RooWorkspace: :import (channell) using existing copy of RooPoisson::gamma_:
[#1] INFO:0bjectHandling RooWorkspace: :import (channell) using existing copy of RooRealVar::nom_gar
[#1] INFO:ObjectHandling RooWorkspace: :import (channell) using existing copy of RooProduct: :gamma_:
[#1] INFO:ObjectHandling RooWorkspace: :import (channell) using existing copy of RooConstVar::gamma.
[#1] INFO:0bjectHandling RooWorkspace: :import (channell) using existing copy of RooRealVar::gamma_:
[#1] INFO:ObjectHandling RooWorkspace: :import (channell) using existing copy of RooPoisson::gamma_:
[#1] INFO:ObjectHandling RooWorkspace: :import (channell) using existing copy of RooRealVar::nom_gar
[#1] INFO:0bjectHandling RooWorkspace: :import (channell) using existing copy of RooProduct::gamma_:
[#1] INFO:ObjectHandling RooWorkspace: :import (channell) using existing copy of RooConstVar::gamma.
[#1] INFO:ObjectHandling RooWorkspace: :import (channell) using existing copy of RooRealVar::gamma_:
[#1] INFO:0bjectHandling RooWorkspace: :import (channell) using existing copy of RooRealSumPdf: :chal
[#1] INFO:ObjectHandling RooWorkspace: :import (channell) using existing copy of RooProduct::L_x_si¢
[#1] INFO:ObjectHandling RooWorkspace: :import (channell) using existing copy of RooProduct::signal.
[#1] INFO:0bjectHandling RooWorkspace: :import (channell) using existing copy of RooHistFunc::signa:
[#1] INFO:ObjectHandling RooWorkspace: :import (channell) using existing copy of RooRealVar::obs_x_
[#1] INFO:ObjectHandling RooWorkspace: :import (channell) using existing copy of RooProduct::signal.
[#1] INFO:0bjectHandling RooWorkspace: :import (channell) using existing copy of RooRealVar::mu for
[#1] INFO:ObjectHandling RooWorkspace: :import (channell) using existing copy of RooStats::HistFactc
[#1] INFO:0bjectHandling RooWorkspace: :import (channell) using existing copy of RooRealVar::binWidt
[#1] INFO:0bjectHandling RooWorkspace: :import (channell) using existing copy of RooProduct::L_x_ba
[#1] INFO:ObjectHandling RooWorkspace: :import (channell) using existing copy of RooProduct: :backgre
[#1] INFO:ObjectHandling RooWorkspace: :import (channell) using existing copy of ParamHistFunc: :mc_:
[#1] INFO:0bjectHandling RooWorkspace: :import (channell) using existing copy of RooProduct::backgr
[#1] INFO:ObjectHandling RooWorkspace: :import (channell) using existing copy of RooHistFunc: :backg:
[#1] INFO:ObjectHandling RooWorkspace: :import (channell) using existing copy of RooStats::HistFactc
[#1] INFO:0bjectHandling RooWorkspace: :import (channell) using existing copy of RooRealVar::binWid!
[#1] INFO:ObjectHandling RooWorkspace: :import (channell) using existing copy of RooProduct::L_x_bac
[#1] INFO:ObjectHandling RooWorkspace: :import (channell) using existing copy of RooProduct: :backgre
[#1] INFO:0bjectHandling RooWorkspace: :import (channell) using existing copy of RooProduct::backgr
[#1] INFO:ObjectHandling RooWorkspace: :import (channell) using existing copy of RooHistFunc: :backg:
[#1] INFO:ObjectHandling RooWorkspace: :import (channell) using existing copy of RooStats::HistFactc
[#1] INFO:0bjectHandling RooWorkspace: :import (channell) using existing copy of RooRealVar::binWid!
[#1] INFO:NumericIntegration —-- RooReallIntegral::init (channell_model_Int [obs_x_channell]) using nume:
RooDataSet: :AsimovData[obs_x_channell,weight:binWeightAsimov] = 2 entries (230 weighted)

[#1] INFO:0bjectHandling —-- RooWorkspace::import (channell) importing dataset AsimovData

[#1] INFO:0bjectHandling —-- RooWorkSpace::import (channell) changing name of dataset from AsimovData
[#1] INFO:ObjectHandling —-- RooWorkspace::import (channell) importing dataset obsData

RooWorkspace (channell)

channell workspace

contents

42
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variables

p.d.f.s

RooGaussian: :alpha_systlConstraint[ x=alpha_systl mean=nom_alpha_systl sigma=1 ] = 1
RooGaussian: :alpha_syst2Constraint[ x=alpha_syst2 mean=nom_alpha_syst2 sigma=1 ] = 1
RooGaussian: :alpha_syst3Constraint[ x=alpha_syst3 mean=nom_alpha_syst3 sigma=1 ] = 1

RooRealSumPdf: :channell_model[ binWidth_obs_x_channell_0 % L_x_signal_channell_overallSyst_x_Exp + Db:
RooPoisson: :gamma_stat_channell_bin_0_constraint[ x=nom_gamma_stat_channell_bin_0 mean=gamma_stat_chz
RooPoisson: :gamma_stat_channell_bin_1_constraint[ x=nom_gamma_stat_channell_bin_1 mean=gamma_stat_ch:
RooGaussian: :lumiConstraint [ x=Lumi mean=nominallLumi sigma=0.1 ] = 1

RooProdPdf: :model_channell[ lumiConstraint % alpha_systlConstraint % alpha_syst2Constraint x alpha_s:

functions
RooProduct: :L_x_backgroundl_channell_overallSyst_x_StatUncert[ Lumi x backgroundl_channell_overallSy:
RooProduct: :L_x_background2_channell_overallSyst_x_StatUncert[ Lumi % background2_channell_overallSy:

RooProduct::L_x_signal_channell_overallSyst_x_Exp[ Lumi * signal_channell_overallSyst_x_Exp ] = 10
RooStats::HistFactory::FlexibleInterpVar: :backgroundl_channell_epsilon[ paramlList=(alpha_syst2) ] =
RooHistFunc: :backgroundl_channell_nominal[ depList=(obs_x_channell) ] = 0

RooProduct: :backgroundl_channell_overallSyst_x_Exp[ backgroundl_channell_nominal % backgroundl_channc
RooProduct: :backgroundl_channell_overallSyst_x_StatUncert[ mc_stat_channell x backgroundl_channell_on
RooStats::HistFactory::FlexibleInterpVar: :background2_channell_epsilon|[ paramList=(alpha_syst3) ] =
RooHistFunc: :background2_channell_nominal|[ depList=(obs_x_channell) ] = 100

RooProduct: :background2_channell_overallSyst_x_Exp[ background2_channell_nominal * background2_channce
RooProduct: :background2_channell_overallSyst_x_StatUncert[ mc_stat_channell x background2_channell_on
RooProduct: :gamma_stat_channell_bin_0_poisMean|[ gamma_stat_channell _bin_0 » gamma_stat_channell_bin_(
RooProduct: :gamma_stat_channell_bin_1_ poisMean|[ gamma_stat_channell_bin_1 % gamma_stat_channell_bin_:
ParamHistFunc: :mc_stat_channell[ ] = 1

RooStats::HistFactory::FlexibleInterpVar::signal_channell_epsilon|[ paramList=(alpha_systl) ] =1
RooHistFunc::signal_channell_nominal[ depList=(obs_x_channell) ] = 10
RooProduct: :signal_channell_overallNorm_x_sigma_epsilon[ mu » signal_channell_epsilon ] = 1

RooProduct::signal_channell_overallSyst_x_Exp[ signal_channell_nominal * signal_channell_overallNorm.

datasets
RooDataSet: :asimovData (obs_x_channell)
RooDataSet: :obsData (obs_x_channell)

embedded datasets (in pdfs and functions)
RooDataHist::signal_channellnominalDHist (obs_x_channell)
RooDataHist: :backgroundl_channellnominalDHist (obs_x_channell)
RooDataHist: :background2_channellnominalDHist (obs_x_channell)

named sets

ModelConfig_GlobalObservables: (nom_alpha_syst2,nom_alpha_syst3,nom_gamma_stat_channell_bin_0, nom_gam
ModelConfig_Observables: (obs_x_channell)

coeflList: (binWidth_obs_x_channell_0,binWidth_obs_x_channell_1,binWidth_obs_x_channell_2)
constraintTerms: (lumiConstraint,alpha_systlConstraint,alpha_syst2Constraint, alpha_syst3Constraint, gar
globalObservables: (nom_alpha_syst2,nom_alpha_syst3,nom_gamma_stat_channell_bin_0,nom_gamma_stat_chan
likelihoodTerms: (channell_model)

obsAndWeight: (weightVar, obs_x_channell)

observables: (obs_x_channell)

observablesSet: (obs_x_channell)

shapelist: (L_x_signal_channell_overallSyst_x_Exp,L_x_backgroundl_channell_overallSyst_x_StatUncert, L
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generic objects
RooStats: :ModelConfig::ModelConfig

Setting Parameter(s) of Interest as: mu

=== Using the following for ModelConfig ===

Observables: RooArgSet:: = (obs_x_channell)

Parameters of Interest: RooArgSet:: = (mu)

Nuisance Parameters: RooArgSet:: = (alpha_syst2,alpha_syst3,gamma_stat_channell_bin_0,gamma_stat.
Global Observables: RooArgSet:: = (nom_alpha_syst2,nom_alpha_syst3,nom_gamma_stat_channell bin_|
PDF: RooProdPdf: :model_channell|[ lumiConstraint » alpha_systlConstraint * alpha_:
Opening File to hold channel: ./results/example__channell_meas_model.root

About to write channel measurement to file
Writing sample: signal

Writing sample: backgroundl

Writing sample: background2

Saved all histograms

Saved Measurement

Successfully wrote channel to file

7777777777777777 Doing channell Fit

[#1] INFO:Minization —-- p.d.f. provides expected number of events, including extended term in likelil
[#1] INFO:NumericIntegration —-- RooReallIntegral::init (channell_model_Int [obs_x_channell]) using nume:
[#1] INFO:Minization -- Including the following contraint terms in minimization: (lumiConstraint, alj
[#1] INFO:Fitting —-- RooAddition::defaultErrorLevel (nll_model_channell_obsData_with_constr) Summatio:
[#1] INFO:Minization -- RooMinimizer::optimizeConst: activating const optimization

[#1] INFO:Minization —-- The following expressions have been identified as constant and will be prec:
[#1] INFO:Minization -- The following expressions will be evaluated in cache-and-track mode: (mc_st:

* h ok ok kk ok ok kk

* % 1 **xSET PRINT 1
* Kk ok ok Kk kkkkk

* k ok ok kk ok ok kk

* x 2 **SET NOGRAD

* Kk ok ok ok k ok k ok ok

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS

1 alpha_syst2 0.00000e+00 1.00000e+00 -5.00000e+00 5.00000e+00
2 alpha_syst3 0.00000e+00 1.00000e+00 -5.00000e+00 5.00000e+00
3 gamma_stat_channell_bin_0 1.00000e+00 1.25000e-01 0.00000e+00
4 gamma_stat_channell _bin_1 1.00000e+00 1.50000e-01 0.00000e+00
5 mu 1.00000e+00 3.00000e-01 0.00000e+00 3.00000e+00

* Kk ok ok kk Kk ok ok ok

* % 3 **SET ERR 0.5

Kok kK Kk kK ok Kk
Kk kK Kk kK ok Kk

* % 4 xxSET PRINT 1
Kok kK Kk kK ok Kk

Kk kK Kk kK ok Kk

* % 5 xxSET STR 1
Kok kK Kk kK kK

NOW USING STRATEGY 1: TRY TO BALANCE SPEED AGAINST RELIABILITY

1.25000e+00
1.50000e+00
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Kk ok ok Kk Kk Kk kK x
* % 6 **MIGRAD 2500 1
Kk ok kK kK kK x

FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4.

[#1] INFO:NumericIntegration —-- RooReallIntegral::init (gamma_stat_channell_bin_0_constraint_Int [gamma_
[#1] INFO:NumericIntegration —-- RooReallIntegral::init (gamma_stat_channell bin_1_constraint_Int [gamma_
START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03
FCN=-1044.81 FROM MIGRAD STATUS=INITIATE 16 CALLS 17 TOTAL
EDM= unknown STRATEGY= 1 NO ERROR MATRIX
EXT PARAMETER CURRENT GUESS STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 alpha_syst2 0.00000e+00 1.00000e+00 2.01358e-01 -4.16828e-01
2 alpha_syst3 0.00000e+00 1.00000e+00 2.01358e-01 -4.54721e-01
3 gamma_stat_channell_bin_0 1.00000e+00 1.25000e-01 2.57889%e-01 -8.33599%e-01
4 gamma_stat_channell _bin_1 1.00000e+00 1.50000e-01 2.14402e-01 -1.28585e+00
5 mu 1.00000e+00 3.00000e-01 2.14402e-01 -7.28473e-01

ERR DEF= 0.5
MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.
COVARIANCE MATRIX CALCULATED SUCCESSFULLY

FCN=-1044.84 FROM MIGRAD STATUS=CONVERGED 83 CALLS 84 TOTAL
EDM=3.27927e-05 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 alpha_syst2 -7.65554e-03 9.82184e-01 4.06870e-03 7.64595e-03
2 alpha_syst3 1.30151e-02 9.47542e-01 4.03080e-03 -2.57978e-02
3 gamma_stat_channell _bin_0 9.99623e-01 4.93234e-02 2.03189e-03 1.64223e-02
4 gamma_stat_channell_bin_1 1.00380e+00 8.00861e-02 2.30372e-03 1.15819e-02
5 mu 1.11502e+00 5.86100e-01 7.54848e-03 7.38809e-04
ERR DEF= 0.5
EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5

9.774e-01 4.466e-02 -1.168e-03 8.943e-03 -2.108e-01
4.466e-02 9.088e-01 2.228e-03 -1.792e-02 -7.712e-02
-1.168e-03 2.228e-03 2.441e-03 4.462e-04 -1.052e-02
8.943e-03 -1.792e-02 4.462e-04 6.441e-03 -1.544e-02
-2.108e-01 -7.712e-02 -1.052e-02 -1.544e-02 3.641le-01
PARAMETER CORRELATION COEFFICIENTS
NO. GLOBAL 1 2 3 4 5

1 0.38745 1.000 0.047 -0.024 0.113 -0.353
2 0.32155 0.047 1.000 0.047 -0.234 -0.134
3 0.38693 -0.024 0.047 1.000 0.113 -0.353
4 0.42409 0.113 -0.234 0.113 1.000 -0.319
5 0.58365 -0.353 -0.134 -0.353 -0.319 1.000
* Kk ok kkkkk kK
* x 7 x*%SET ERR 0.5

Kk khkkk Kk kkk

* Kk ok kkk ok kkk

* % 8 **SET PRINT 1
Kk hk kK k Kk k kK

* Kk ok ok kk Kk k kK

* % 9 %x«HESSE 2500

Kk khkkk Kk kkk

COVARIANCE MATRIX CALCULATED SUCCESSFULLY

FCN=-1044.84 FROM HESSE STATUS=0K 31 CALLS 115 TOTAL
EDM=3.28068e-05 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER INTERNAL INTERNAL
NO. NAME VALUE ERROR STEP SIZE VALUE

1 alpha_syst2 -7.65554e-03 9.82481e-01 8.13739%9e-04 -1.53111e-03
2 alpha_syst3 1.30151e-02 9.47601e-01 8.06160e-04 2.60302e-03
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3 gamma_stat_channell _bin_ 0 9.99623e-01 4.93408e-02 4.06379%9e-04 6.42748e-01
4 gamma_stat_channell_bin_1 1.00380e+00 8.01088e-02 4.60745e-04 3.45220e-01

5 mu 1.11502e+00 5.86553e-01 1.50970e-03 -2.59558e-01
ERR DEF= 0.5
EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5

9.780e-01 4.48le-02 -1.142e-03 8.985e-03 -2.115e-01
4.481le-02 9.089e-01 2.237e-03 -1.792e-02 -7.728e-02
-1.142e-03 2.237e-03 2.442e-03 4.485e-04 -1.055e-02
8.985e-03 -1.792e-02 4.485e-04 6.445e-03 -1.549e-02
-2.115e-01 -7.728e-02 -1.055e-02 -1.549e-02 3.647e-01
PARAMETER CORRELATION COEFFICIENTS
NO. GLOBAL 1 2 3 4 5

1 0.38812 1.000 0.048 -0.023 0.113 -0.354
2 0.32173 0.048 1.000 0.047 -0.234 -0.134
3 0.38771 -0.023 0.047 1.000 0.113 -0.354
4 0.42463 0.113 -0.234 0.113 1.000 -0.320
5 0.58459 -0.354 -0.134 -0.354 -0.320 1.000
*k Kk kK Kk kKKK
* % 10 »x*MINOS 2500 1
Ak Kk kK Kk kK kK
FCN=-1044.84 FROM MINOS STATUS=SUCCESSFUL 73 CALLS 188 TOTAL
EDM=3.28068e-05 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER PARABOLIC MINOS ERRORS
NO. NAME VALUE ERROR NEGATIVE POSITIVE

alpha_syst2 -7.65554e-03 9.82481e-01 -9.90051e-01 9.87631e-01
alpha_syst3 1.30151e-02 9.47601e-01
gamma_stat_channell_bin_0 9.99623e-01 4.93408e-02
gamma_stat_channell_bin_1 1.00380e+00 8.01088e-02
mu 1.11502e+00 5.86553e-01

ERR DEF= 0.5

g w N

* ok Kk ok ok ok ok ok ok ok

* % 11 *+«MINOS 2500 2
* Kk ok ok ok k ok ok k ok
FCN=-1044.84 FROM MINOS STATUS=SUCCESSFUL 55 CALLS 243 TOTAL
EDM=3.28068e-05 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER PARABOLIC MINOS ERRORS
NO. NAME VALUE ERROR NEGATIVE POSITIVE
1 alpha_syst2 -7.65554e-03 9.82481e-01 -9.90051e-01 9.87631e-01
2 alpha_syst3 1.30151e-02 9.47601e-01 -9.47046e-01 9.60252e-01
3 gamma_stat_channell_bin_0 9.99623e-01 4.93408e-02
4 gamma_stat_channell_bin_1 1.00380e+00 8.01088e-02
5 mu 1.11502e+400 5.86553e-01

ERR DEF= 0.5

Ak Kk kK Kk kKKK

* % 12 **MINOS 2500 3
* k ok ok ok k ok ok k Kk
FCN=-1044.84 FROM MINOS STATUS=SUCCESSFUL 74 CALLS 317 TOTAL
EDM=3.28068e-05 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER PARABOLIC MINOS ERRORS
NO. NAME VALUE ERROR NEGATIVE POSITIVE
1 alpha_syst2 -7.65554e-03 9.82481e-01 -9.90051e-01 9.87631e-01
2 alpha_syst3 1.30151e-02 9.47601e-01 -9.47046e-01 9.60252e-01
3 gamma_stat_channell_bin_0 9.99623e-01 4.93408e-02 -4.86933e-02 5.01526e-02
4 gamma_stat_channell _bin_1 1.00380e+00 8.01088e-02
5 mu 1.11502e+00 5.86553e-01

ERR DEF= 0.5
Kk ok ok k ok ok ok ok ok
* % 13 *+«MINOS 2500 4

Ak Kk kKkKk kKKK
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FCN=-1044.84 FROM MINOS

NO.

g w N

74 CALLS 391 TOTAL
ERROR MATRIX ACCURATE

STATUS=SUCCESSFUL
EDM=3.28068e-05 STRATEGY= 1

Kk Kk Kk kK Kk kK kK

* K

* ok Kk ok ok ok ok ok ok ok

EXT PARAMETER PARABOLIC MINOS ERRORS
NAME VALUE ERROR NEGATIVE POSITIVE
alpha_syst2 -7.65554e-03 9.82481e-01 -9.90051e-01 9.87631e-01
alpha_syst3 1.30151e-02 9.47601e-01 -9.47046e-01 9.60252e-01
gamma_stat_channell_bin_0 9.99623e-01 4.93408e-02 -4.86933e-02 5.01526e-02
gamma_stat_channell_bin_1 1.00380e+00 8.01088e-02 -7.85700e-02 8.20232e-02
mu 1.11502e+400 5.86553e-01
ERR DEF= 0.5
14 **MINOS 2500 5
FCN=-1044.84 FROM MINOS STATUS=SUCCESSFUL 82 CALLS 473 TOTAL

EDM=3.28068e-05 STRATEGY= 1 ERROR MATRIX ACCURATE

EXT PARAMETER PARABOLIC MINOS ERRORS
NO. NAME VALUE ERROR NEGATIVE POSITIVE
1 alpha_syst2 -7.65554e-03 9.82481e-01 -9.90051e-01 9.87631e-01
2 alpha_syst3 1.30151e-02 9.47601e-01 -9.47046e-01 9.60252e-01
3 gamma_stat_channell_bin_0 9.99623e-01 4.93408e-02 -4.86933e-02 5.01526e-02
4 gamma_stat_channell _bin_1 1.00380e+00 8.01088e-02 -7.85700e-02 8.20232e-02
5 mu 1.11502e+00 5.86553e-01 -5.96829e-01 6.11590e-01
ERR DEF= 0.5
[#1] INFO:Minization —-- RooMinimizer::optimizeConst: deactivating const optimization
printing results for mu at 1.11502 high -0.596829 low 0.61159
[#1] INFO:Minization -- p.d.f. provides expected number of events, including extended term in likelil
[#1] INFO:NumericIntegration —-- RooReallIntegral::init (channell_model_Int[obs_x_channell]) using nume:
[#1] INFO:Minization -- Including the following contraint terms in minimization: (lumiConstraint,alj
[#1] INFO:NumericIntegration —-- RooReallIntegral::init (channell_model_Int [obs_x_channell]) using nume:
[#1] INFO:NumericIntegration —-- RooReallIntegral::init (channell_model_Int[obs_x_channell]) using nume:
[#1] INFO:NumericIntegration —-- RooReallIntegral::init (gamma_stat_channell_bin_0_constraint_Int [gamma_
[#1] INFO:NumericIntegration —-- RooReallIntegral::init (gamma_stat_channell _bin_1_constraint_Int [gamma_
[#1] INFO:NumericIntegration —-- RooReallIntegral::init (channell_model_Int [obs_x_channell]) using nume:
[#1] INFO:Minization —-- RooProfilellL::evaluate(nll_model_channell_ obsData_with_constr_Profile[mu]) C:
[#1] INFO:Fitting —- RooAddition::defaultErrorLevel (nll_model_channell_obsData_with_constr) Summatio:
[#1] INFO:Minization —- RooProfilellL::evaluate(nll_model_channell_obsData_with_constr_Profile[mu]) d
[#1] INFO:NumericIntegration —-- RooReallIntegral::init (channell_model_Int [obs_x_channell]) using nume:
[#1] INFO:NumericIntegration —-- RooReallIntegral::init (gamma_stat_channell _bin_0_constraint_Int [gamma_
[#1] INFO:NumericIntegration —-- RooReallIntegral::init (gamma_stat_channell bin_1_constraint_Int [gamma_
[#1] INFO:Minization —-- RooProfilellL::evaluate(nll_model_channell_ obsData_with_constr_ Profile[mu]) m:
...full list of observables:
RooArgList:: = (obs_x_channell)
Entering combination
[#1] INFO:ObjectHandling —-- RooWorkspace::import (combined) importing RooRealVar::nom_alpha_syst2
[#1] INFO:0bjectHandling —-- RooWorkspace::import (combined) importing RooRealVar::nom_alpha_syst3
[#1] INFO:ObjectHandling —-- RooWorkspace::import (combined) importing RooRealVar::nom_gamma_stat_chani
[#1] INFO:ObjectHandling —-- RooWorkspace::import (combined) importing RooRealVar::nom_gamma_stat_chani

create toy data for channell

RooDataSet: :AsimovDatal[obs_x_channell,channelCat,weight:binWeightAsimov] =
:import (combined)
:import (combined)
:import (combined)

[#1] INFO:0bjectHandling —-- RooWorkspace:
[#1] INFO:ObjectHandling —-- RooWorkSpace:
[#1] INFO:ObjectHandling —-- RooWorkspace:
Merging data for channel channell

[#1] INFO:ObjectHandling —-- RooWorkspace:
[#1] INFO:ObjectHandling —-- RooWorkSpace:

:import (combined)
:import (combined)

2 e
importing dataset as
changing name of dat
importing RooRealVar

importing dataset ch
changing name of dat

ntries (230 weighted)
imovDataFullModel
aset from asimovDatal
::0bs_x_channell

annell

aset from channell t«

3.3. Tools for model building and model manipulation

47



RooStatsWorkbook Documentation

RooWorkspace (combined) combined contents

variables

(channelCat,nom_alpha_syst2,nom_alpha_syst3,nom_gamma_stat_channell_bin_0,nom_gamma_stat_channell_bir

datasets

RooDataSet::asimovData (obs_x_channell,weightVar, channelCat)
RooDataSet: :obsData (channelCat, obs_x_channell)

named sets

ModelConfig_GlobalObservables: (nom_alpha_syst2,nom_alpha_syst3,nom_gamma_stat_channell_bin_0,nom_gam
ModelConfig_Observables: (obs_x_channell,weightVar, channelCat)
globalObservables: (nom_alpha_syst2,nom_alpha_syst3,nom_gamma_stat_channell_bin_0,nom_gamma_stat_chant
observables: (obs_x_channell,weightVar,channelCat)

Importing combined model

[#1] INFO:0bjectHandling RooWorkspace: :import (combined) importing dataset signal_channellnominalD]
[#1] INFO:ObjectHandling RooWorkspace: :import (combined) importing dataset backgroundl_channellnom:
[#1] INFO:ObjectHandling RooWorkspace: :import (combined) importing dataset background2_channellnom:
[#1] INFO:0bjectHandling RooWorkspace: :import (combined) importing RooSimultaneous::simPdf

[#1] INFO:ObjectHandling RooWorkspace: :import (combined) using existing copy of RooCategory::channce
[#1] INFO:0bjectHandling RooWorkspace: :import (combined) importing RooProdPdf::model_channell

[#1] INFO:0bjectHandling RooWorkspace: :import (combined) importing RooGaussian::lumiConstraint

[#1] INFO:0bjectHandling RooWorkspace: :import (combined) importing RooConstVar::0.1

[#1] INFO:ObjectHandling RooWorkspace: :import (combined) importing RooRealVar::Lumi

[#1] INFO:0bjectHandling RooWorkspace: :import (combined) importing RooRealVar::nominalLumi

[#1] INFO:ObjectHandling RooWorkspace: :import (combined) importing RooGaussian::alpha_systlConstra:
[#1] INFO:ObjectHandling RooWorkspace: :import (combined) importing RooConstVar::1

[#1] INFO:0bjectHandling RooWorkspace: :import (combined) importing RooRealVar::alpha_systl

[#1] INFO:ObjectHandling RooWorkspace: :import (combined) importing RooRealVar::nom_alpha_systl

[#1] INFO:ObjectHandling RooWorkspace: :import (combined) importing RooGaussian::alpha_syst2Constra:
[#1] INFO:0bjectHandling RooWorkspace: :import (combined) importing RooRealVar::alpha_syst2

[#1] INFO:ObjectHandling RooWorkspace: :import (combined) using existing copy of RooRealVar::nom_alg
[#1] INFO:ObjectHandling RooWorkspace: :import (combined) importing RooGaussian::alpha_syst3Constra:
[#1] INFO:0bjectHandling RooWorkspace: :import (combined) importing RooRealVar::alpha_syst3

[#1] INFO:ObjectHandling RooWorkspace: :import (combined) using existing copy of RooRealVar::nom_alg
[#1] INFO:ObjectHandling RooWorkspace: :import (combined) importing RooPoisson::gamma_stat_channell.
[#1] INFO:0bjectHandling RooWorkspace: :import (combined) using existing copy of RooRealVar::nom_gar
[#1] INFO:ObjectHandling RooWorkspace: :import (combined) importing RooProduct::gamma_stat_channell.
[#1] INFO:ObjectHandling RooWorkspace: :import (combined) importing RooConstVar::gamma_stat_channel!
[#1] INFO:0ObjectHandling RooWorkspace: :import (combined) importing RooRealVar::gamma_stat_channell.
[#1] INFO:ObjectHandling RooWorkspace: :import (combined) importing RooPoisson::gamma_stat_channell.
[#1] INFO:ObjectHandling RooWorkspace: :import (combined) using existing copy of RooRealVar::nom_gar
[#1] INFO:0ObjectHandling RooWorkspace: :import (combined) importing RooProduct::gamma_stat_channell.
[#1] INFO:ObjectHandling RooWorkspace: :import (combined) importing RooConstVar::gamma_stat_channel!
[#1] INFO:ObjectHandling RooWorkspace: :import (combined) importing RooRealVar::gamma_stat_channell.
[#1] INFO:0bjectHandling RooWorkspace: :import (combined) importing RooRealSumPdf::channell_model
[#1] INFO:ObjectHandling RooWorkspace: :import (combined) importing RooProduct::L_x_signal_channell_
[#1] INFO:ObjectHandling RooWorkspace: :import (combined) importing RooProduct::signal_channell_ove:
[#1] INFO:0bjectHandling RooWorkspace: :import (combined) importing RooHistFunc::signal_channell_nor
[#1] INFO:ObjectHandling RooWorkspace: :import (combined) using existing copy of RooRealVar::obs_x_
[#1] INFO:ObjectHandling RooWorkspace: :import (combined) importing RooProduct::signal_channell_ove:
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[#1] INFO:0bjectHandling —--—
[#1] INFO:ObjectHandling --
[#1] INFO:0bjectHandling --
[#1] INFO:0bjectHandling —--—
[#1] INFO:ObjectHandling --
[#1] INFO:0bjectHandling --—
[#1] INFO:ObjectHandling —-
[#1] INFO:ObjectHandling —-—
[#1] INFO:0ObjectHandling --—
[#1] INFO:0bjectHandling —-—
[#1] INFO:ObjectHandling —-—
[#1] INFO:0bjectHandling —-—
[#1] INFO:0bjectHandling —-—
[#1] INFO:ObjectHandling —--—
[#1] INFO:0bjectHandling —-
[#1] INFO:0bjectHandling —-—

setting alpha_systl constant
setting Lumi constant

Setting Parameter (s) of Inte

Using the following for
Observables: Roo
Parameters of Interest: Roo
Nuisance Parameters:

RooWorkspace: :import (combined) importing RooRealVar::mu

RooWorkspace: :import (combined) importing RooStats::HistFactory::Flexible!:
RooWorkspace: :import (combined) importing RooRealVar::binWidth_obs_x_chant
RooWorkspace: :import (combined) importing RooProduct::L_x_backgroundl_char
RooWorkspace: :import (combined) importing RooProduct: :backgroundl_channel!
RooWorkspace: :import (combined) importing ParamHistFunc::mc_stat_channell
RooWorkspace: :import (combined) importing RooProduct: :backgroundl_channel!
RooWorkspace: :import (combined) importing RooHistFunc::backgroundl_channe!:
RooWorkspace: :import (combined) importing RooStats::HistFactory::Flexible:
RooWorkspace: :import (combined) importing RooRealVar::binWidth_obs_x_chani
RooWorkspace: :import (combined) importing RooProduct::L_x_background2_char
RooWorkspace: :import (combined) importing RooProduct: :background2_channel!
RooWorkspace: :import (combined) importing RooProduct: :background2_channel!
RooWorkspace: :import (combined) importing RooHistFunc::background2_channe!
RooWorkspace: :import (combined) importing RooStats::HistFactory::Flexible:
RooWorkspace: :import (combined) importing RooRealVar::binWidth_obs_x_chani

rest as: mu
ModelConfig
ArgSet::
ArgSet:: =

u)

obs_x_channell,weightVar, channelCat)

Global Observables:

PDF':

Writing
Writing
Info in

Writing
Writing
Writing

RooArgSet::

RooSimultaneous:

combined workspace to file:

combined measurement to file:

<TCanvas::Print>: eps file

sample:
sample:
sample:

signal
backgroundl
background?2

RooArgSet:: =

./results/example___

(
(m
(
(

./results/example_

./results/example_

combined_meas_model.root
combined_meas_model.root

alpha_syst2,alpha_syst3,gamma_stat_channell_bin_0,gamma_stat.
nom_alpha_syst2,nom_alpha_syst3, nom_gamma_stat_channell_bin_
:simPdf[ indexCat=channelCat channell=model_channell

] = 0.:

channell_meas_profilelLR.eps has been created

Saved all histograms
Saved Measurement

[#1] INFO:Minization

-— p.d.f.

Doing combined Fit

provides expected number of events,
Including the following contraint terms in minimization:

including extended term in likelil

(lumiConstraint, aly

]
[#1] INFO:Minization --
]

[#1] INFO:Fitting —-- RooAddition::defaultErrorLevel (nll_simPdf_obsData_with_constr) Summation contair
[#1] INFO:Minization —-- RooMinimizer::optimizeConst: activating const optimization
RooAbsTestStatistic::initSimMode: creating slave calculator #0 for state channell (2 dataset entries]
[#1] INFO:NumericIntegration —-- RooReallIntegral::init (channell_model_Int [obs_x_channell]) using nume:
[#1] INFO:Fitting —-- RooAbsTestStatistic::initSimMode: created 1 slave calculators.

[#1] INFO:NumericIntegration —-- RooReallIntegral::init (channell_model_Int [obs_x_channell]) using nume:
[#1] INFO:Minization —-- The following expressions have been identified as constant and will be prec:
[#1] INFO:Minization -- The following expressions will be evaluated in cache-and-track mode: (mc_st:
* ok Kk ok ok ok ok ok ok k

*% 1842 *xSET NOGRAD

* Kk ok ok ok k ok ok ok ok

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS

3.3. Tools for model building and model manipulation
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1 alpha_syst2 0.00000e+00 1.00000e+00 -5.00000e+00 5.00000e+00
2 alpha_syst3 0.00000e+00 1.00000e+00 -5.00000e+00 5.00000e+00
3 gamma_stat_channell _bin_0 1.00000e+00 1.25000e-01 0.00000e+00 1.25000e+00
4 gamma_stat_channell bin_1 1.00000e+00 1.50000e-01 0.00000e+00 1.50000e+00
5 mu 1.00000e+00 3.00000e-01 0.00000e+00 3.00000e+00

* Kk ok ok ok k ok kkk

*% 1843 xxSET ERR 0.5

Kk hk kK kkkk Kk

* Kk ok ok Kk k ok ok kk

*% 1844 *xSET PRINT 1

Kk ok kK k Kk k kK

* Kk ok ok ok k ok ok ok ok

*% 1845 xxSET STR 1

Kok Kk Kk kK ok Kk
NOW USING STRATEGY
*ok kK Kok kK ok ok

*% 1846 **MIGRAD

kkKkkKkKk kKKK

FIRST CALL TO USER FUNCTION

1:

2500

TRY TO BALANCE SPEED AGAINST RELIABILITY

AT NEW START POINT, WITH IFLAG=4.

[#1] INFO:NumericIntegration —-- RooRealIntegral::init (gamma_stat_channell _bin_0_constraint_Int [gamma_
[#1] INFO:NumericIntegration —-- RooReallIntegral::init (gamma_stat_channell bin_1_constraint_Int [gamma_
START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03
FCN=-1044.81 FROM MIGRAD STATUS=INITIATE 16 CALLS 17 TOTAL
EDM= unknown STRATEGY= 1 NO ERROR MATRIX
EXT PARAMETER CURRENT GUESS STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 alpha_syst2 0.00000e+00 1.00000e+00 2.01358e-01 -4.16836e-01
2 alpha_syst3 0.00000e+00 1.00000e+00 2.01358e-01 -4.54731e-01
3 gamma_stat_channell_bin_0 1.00000e+00 1.25000e-01 2.57889%e-01 -8.33599%e-01
4 gamma_stat_channell _bin_1 1.00000e+00 1.50000e-01 2.14402e-01 -1.28585e+00
5 mu 1.00000e+00 3.00000e-01 2.14402e-01 -7.28473e-01

ERR DEF= 0.5

MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.
COVARIANCE MATRIX CALCULATED SUCCESSFULLY

FCN=-1044.84 FROM MIGRAD STATUS=CONVERGED 83 CALLS 84 TOTAL
EDM=3.27939%9e-05 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 alpha_syst2 -7.65551e-03 9.82184e-01 4.06870e-03 7.64609e-03
2 alpha_syst3 1.30150e-02 9.47542e-01 4.03080e-03 -2.57984e-02
3 gamma_stat_channell_bin_0 9.99623e-01 4.93234e-02 2.03189e-03 1.64238e-02
4 gamma_stat_channell_bin_1 1.00380e+00 8.00861e-02 2.30372e-03 1.15810e-02
5 mu 1.11502e+00 5.86100e-01 7.54848e-03 7.38706e-04
ERR DEF= 0.5
EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5
9.774e-01 4.466e-02 -1.168e-03 8.943e-03 -2.108e-01
4.466e-02 9.088e-01 2.228e-03 -1.792e-02 -7.712e-02
-1.168e-03 2.228e-03 2.441e-03 4.462e-04 -1.052e-02
8.943e-03 -1.792e-02 4.462e-04 6.441e-03 -1.544e-02
-2.108e-01 -7.712e-02 -1.052e-02 -1.544e-02 3.641e-01
PARAMETER CORRELATION COEFFICIENTS
NO. GLOBAL 1 2 3 4 5
1 0.38745 1.000 0.047 -0.024 0.113 -0.353
2 0.32155 0.047 1.000 0.047 -0.234 -0.134
3 0.38693 -0.024 0.047 1.000 0.113 -0.353
4 0.42409 0.113 -0.234 0.113 1.000 -0.319
5 0.58365 -0.353 -0.134 -0.353 -0.319 1.000

*kk Kk kK Kk Kk kKK
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% 1847 *xSET ERR
Kk ok kkk Kk kk Kk

* Kk ok ok ok kkkkk

%% 1848 **SET PRINT
Kk kkkkkk kK

* Kk ok ok ok k ok kkk

*% 1849 x+xHESSE

*kkhkkkk kK kK

2500

COVARIANCE MATRIX CALCULATED SUCCESSFULLY

FCN=-1044.84 FROM HESSE

EXT PARAMETER

STATUS=0K
EDM=3.2808e-05

1
1
1
0

-2.
=7.
-1.
-1.

3.

4
113

.234

113
000

.320

NO. NAME VALUE ERROR
1 alpha_syst2 -7.65551e-03 9.82481e-0
2 alpha_syst3 1.30150e-02 9.47601e-0
3 gamma_stat_channell_bin_0 9.99623e-0
4 gamma_stat_channell_bin_1 1.00380e+0
5 mu 1.11502e+00 5.86553e-01
ERR DEF= 0.5
EXTERNAL ERROR MATRIX. NDIM= 25 NPAR=
9.780e-01 4.481e-02 -1.142e-03 8.985e-03
4.481e-02 9.089e-01 2.237e-03 -1.792e-02
-1.142e-03 2.237e-03 2.442e-03 4.485e-04
8.985e-03 -1.792e-02 4.485e-04 6.445e-03
-2.115e-01 -7.728e-02 -1.055e-02 -1.549e-02
PARAMETER CORRELATION COEFFICIENTS
NO. GLOBAL 1 2 3
1 0.38812 1.000 0.048 -0.023 0.
2 0.32173 0.048 1.000 0.047 -0
3 0.38771 -0.023 0.047 1.000 O.
4 0.42463 0.113 -0.234 0.113 1.
5 0.58459 -0.354 -0.134 -0.354 -0
*kkkhkkkkkkk*k
*+% 1850 *x*MINOS 2500 1

Kk Kk hkkKk kKKK

FCN=-1044.84 FROM MINOS

EDM=3.2808e-05

EXT PARAMETER

NO. NAME VALUE
1 alpha_syst2 -7.65551e-03
2 alpha_syst3 1.30150e-02
3 gamma_stat_channell_bin_0
4 gamma_stat_channell_bin_1
5 mu 1.11502e+00

* ok k ok kk kK ok ok

%% 1851 *x*MINOS
* Kk ok ok ok kkk ok ok

FCN=-1044.84 FROM MINOS

2500

EDM=3.2808e-05

ERROR
9.82481e-0
9.47601e-0
9.99623e-0
1.00380e+0

5.86553e-01

ERR DEF= 0.5

EXT PARAMETER

NO. NAME VALUE
1 alpha_syst2 -7.65551e-03
2 alpha_syst3 1.30150e-02
3 gamma_stat_channell_bin_0
4 gamma_stat_channell_bin_1
5 mu 1.11502e+400

Kk Kk kKkk Kk kKK

ERROR
9.82481e-0
9.47601e-0
9.99623e-0
1.00380e+0

5.86553e-01

ERR DEF= 0.5

STATUS=SUCCESSFUL
STRATEGY= 1
PARABOLIC

STRATEGY= 1

31 CALLS 115 TOTAL
ERROR MATRIX ACCURATE
INTERNAL INTERNAL
STEP SIZE VALUE
8.1373%e-04 -1.53110e-03
8.06160e-04 2.60300e-03
4.93408e-02 4.06379e-04 6.42748e-01
8.01088e-02 4.60745e-04 3.45220e-01

1.50970e-03

5
115e-01
728e-02
055e-02
549e-02
647e-01

.354
.134
.354
.320
1.000

73 CALLS

-2.59558e-01

ERR DEF=0.5

188 TOTAL
ERROR MATRIX ACCURATE

MINOS ERRORS

NEGATIVE POSITIVE
1 -9.90051e-01 9.87631le-01
1
1 4.93408e-02
0 8.01088e-02
-5.96829%9e-01 6.11590e-01
55 CALLS 243 TOTAL

STATUS=SUCCESSFUL
STRATEGY= 1
PARABOLIC

ERROR MATRIX ACCURATE

MINOS ERRORS

NEGATIVE POSITIVE
1 -9.90051e-01 9.87631e-01
1 -9.47046e-01 9.60252e-01
1 4.93408e-02
0 8.01088e-02

-5.96829e-01 6.11590e-01

3.3. Tools for model building and model manipulation
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*% 1852 xxMINOS

*k Kk kK Kk kK kK

FCN=-1044.84 FROM MINOS
EDM=3.2808e-05

2500 3

74 CALLS 317 TOTAL
ERROR MATRIX ACCURATE

STATUS=SUCCESSFUL
STRATEGY= 1

EXT PARAMETER PARABOLIC MINOS ERRORS
NO. NAME VALUE ERROR NEGATIVE POSITIVE
1 alpha_syst2 -7.65551e-03 9.82481e-01 -9.90051e-01 9.87631e-01
2 alpha_syst3 1.30150e-02 9.47601e-01 -9.47046e-01 9.60252e-01
3 gamma_stat_channell_bin_0 9.99623e-01 4.93408e-02 -4.86933e-02 5.01526e-02
4 gamma_stat_channell_bin_1 1.00380e+00 8.01088e-02
5 mu 1.11502e+00 5.86553e-01 -5.96829e-01 6.11590e-01
ERR DEF= 0.5
* ok Kk ok ok ok ok ok ok x
*x 1853 **MINOS 2500 4
*khkkkkkkhkkKk*k
FCN=-1044.84 FROM MINOS STATUS=SUCCESSFUL 74 CALLS 391 TOTAL
EDM=3.2808e-05 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER PARABOLIC MINOS ERRORS
NO. NAME VALUE ERROR NEGATIVE POSITIVE
1 alpha_syst2 -7.65551e-03 9.82481e-01 -9.90051e-01 9.87631e-01
2 alpha_syst3 1.30150e-02 9.47601e-01 -9.47046e-01 9.60252e-01
3 gamma_stat_channell_bin_0 9.99623e-01 4.93408e-02 -4.86933e-02 5.01526e-02
4 gamma_stat_channell_bin_1 1.00380e+00 8.01088e-02 -7.85700e-02 8.20232e-02
5 mu 1.11502e+00 5.86553e-01 -5.96829e-01 6.11590e-01
ERR DEF= 0.5
* kk ok kkkkkk
*x 1854 x*MINOS 2500 5
* ok Kk ok ok k ok ok ok ok
FCN=-1044.84 FROM MINOS STATUS=SUCCESSFUL 82 CALLS 473 TOTAL
EDM=3.2808e-05 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER PARABOLIC MINOS ERRORS
NO. NAME VALUE ERROR NEGATIVE POSITIVE
1 alpha_syst2 -7.65551e-03 9.82481e-01 -9.90051e-01 9.87631e-01
2 alpha_syst3 1.30150e-02 9.47601e-01 -9.47046e-01 9.60252e-01
3 gamma_stat_channell_bin_0 9.99623e-01 4.93408e-02 -4.86933e-02 5.01526e-02
4 gamma_stat_channell _bin_1 1.00380e+00 8.01088e-02 -=7.85700e-02 8.20232e-02
5 mu 1.11502e+00 5.86553e-01 -5.96829e-01 6.11590e-01
ERR DEF= 0.5
[#1] INFO:Minization —- RooMinimizer::optimizeConst: deactivating const optimization

printing results for mu at 1.11502 high -0.596829 low 0.61159

[#1] INFO:Minization -- p.d.f. provides expected number of events, including extended term in likelil
[#1] INFO:Minization -- Including the following contraint terms in minimization: (lumiConstraint, alj
RooAbsTestStatistic::initSimMode: creating slave calculator #0 for state channell (2 dataset entries]
[#1] INFO:NumericIntegration -- RooRealIntegral::init (channell_model_Int [obs_x_channell]) using nume:
[#1] INFO:Fitting —-- RooAbsTestStatistic::initSimMode: created 1 slave calculators.

[#1] INFO:NumericIntegration —-- RooReallIntegral::init (channell_model_Int [obs_x_channell]) using nume:
[#1] INFO:NumericIntegration -- RooReallIntegral::init (gamma_stat_channell _bin_0_constraint_Int [gamma_
[#1] INFO:NumericIntegration —-- RooReallIntegral::init (gamma_stat_channell bin_1_constraint_Int [gamma_
[#1] INFO:Minization —-- RooProfilelLL::evaluate(nll_simPdf_obsData_with_constr_Profile[mu]) Creating :
[#1] INFO:Fitting —-- RooAddition::defaultErrorlLevel (nll_simPdf_obsData_with_constr) Summation contair
[#1] INFO:Minization —- RooProfilellL::evaluate(nll_simPdf_obsData_with_constr_Profile[mu]) determinii
RooAbsTestStatistic::initSimMode: creating slave calculator #0 for state channell (2 dataset entries]
[#1] INFO:NumericIntegration —-- RooReallIntegral::init (channell_model_Int [obs_x_channell]) using nume:
[#1] INFO:Fitting —-- RooAbsTestStatistic::initSimMode: created 1 slave calculators.

[#1] INFO:NumericIntegration —-- RooReallIntegral::init (channell_model_Int [obs_x_channell]) using nume:
[#1] INFO:NumericIntegration —-- RooReallIntegral::init (gamma_stat_channell _bin_0_constraint_Int [gamma_
[#1] INFO:NumericIntegration —-- RooReallIntegral::init (gamma_stat_channell bin_1_constraint_Int[gamma_
[#1] INFO:Minization —— RooProfilelLL::evaluate (nll_simPdf_obsData_with_constr_Profile[mu]) minimum £
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RooAbsTestStatistic::initSimMode: creating slave calculator #0 for state channell (2 dataset entries,

[#1] INFO:NumericIntegration —-- RooReallIntegral::init (channell_model_Int [obs_x_channell]) using nume:
[#1] INFO:Fitting —-- RooAbsTestStatistic::initSimMode: created 1 slave calculators.
[#1] INFO:NumericIntegration —-- RooReallIntegral::init (channell_model_Int [obs_x_channell]) using nume:

Info in <TCanvas::Print>: eps file ./results/example__ combined_meas_profilelLR.eps has been created
Make some adjustments to histfactory workspace to conform to naming conventions of this set of example macros

In [14]: w—>SetName ("w")
w->data ("obsData") ->SetName ("observed_data")

Print resulting workspace and save to file

In [15]: w—>Print ("t") ;

w-—>writeToFile ("model.root™)

RooWorkspace (w) combined contents

variables

p.d.f.s
RooSimultaneous: :simPdf|[ indexCat=channelCat channell=model_channell ] = 0.174888
RooProdPdf: :model_channell[ lumiConstraint * alpha_systlConstraint % alpha_syst2Constraint » alpha.
RooGaussian: :lumiConstraint [ x=Lumi mean=nominallLumi sigma=0.1 ] = 1/0.250663
RooGaussian: :alpha_systlConstraint[ x=alpha_systl mean=nom_alpha_systl sigma=1 ] = 1/2.50663
RooGaussian: :alpha_syst2Constraint [ x=alpha_syst2 mean=nom_alpha_syst2 sigma=1 ] = 1/2.50663
RooGaussian: :alpha_syst3Constraint[ x=alpha_syst3 mean=nom_alpha_syst3 sigma=1 ] = 1/2.50663

RooPoisson: :gamma_stat_channell_bin_0_constraint|[ x=nom_gamma_stat_channell bin_0 mean=gamma_stat
RooProduct: :gamma_stat_channell _bin_0_poisMean|[ gamma_stat_channell_bin_0 * gamma_stat_channel:
RooPoisson: :gamma_stat_channell_bin_1_constraint|[ x=nom_gamma_stat_channell_bin_1 mean=gamma_stat
RooProduct: :gamma_stat_channell_bin_1_poisMean[ gamma_stat_channell_bin_1 % gamma_stat_channel!
RooRealSumPdf: :channell _model[ binWidth_obs_x_channell_ 0 % L_x_signal_channell_overallSyst_x_Exp
RooProduct::L_x_signal_channell_overallSyst_x_Exp[ Lumi *» signal_channell_overallSyst_x_Exp ] -
RooProduct: :signal_channell_overallSyst_x_Exp[ signal_channell_nominal x signal_channell_ove:
RooHistFunc::signal_channell_nominal[ depList=(obs_x_channell) ] = 10
RooProduct: :signal_channell_overallNorm_x_sigma_epsilon[ mu x signal_channell_epsilon ] =
RooStats::HistFactory::FlexibleInterpVar::signal_channell epsilon|[ paramList=(alpha_syst!:
RooProduct: :L_x_backgroundl_channell_overallSyst_x_StatUncert[ Lumi * backgroundl_channell_ove:
RooProduct: :backgroundl_channell_overallSyst_x_StatUncert[ mc_stat_channell x backgroundl_ch:

ParamHistFunc::mc_stat_channell[ ] =1
RooProduct: :backgroundl_channell_overallSyst_x_Exp[ backgroundl_channell_nominal * backgrot
RooHistFunc: :backgroundl_channell_nominal[ depList=(obs_x_channell) ] = 0

RooStats::HistFactory::FlexibleInterpVar: :backgroundl_channell_epsilon[ paramList=(alpha_
RooProduct: :L_x_background2_channell_overallSyst_x_StatUncert[ Lumi x background2_channell_ove:
RooProduct: :background2_channell_overallSyst_x_StatUncert[ mc_stat_channell % background2_ch:

ParamHistFunc: :mc_stat_channell|[ ] =1
RooProduct: :background2_channell_overallSyst_x_Exp[ background2_channell_nominal * backgrot
RooHistFunc: :background2_channell_nominal|[ depList=(obs_x_channell) ] = 100

RooStats::HistFactory::FlexibleInterpVar: :background2_channell_epsilon[ paramList=(alpha_

datasets

RooDataSet::asimovData (obs_x_channell,weightVar, channelCat)
RooDataSet: :observed_data (channelCat, obs_x_channell)
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embedded datasets (in pdfs and functions)

RooDataHist::signal_channellnominalDHist (obs_x_channell)
RooDataHist: :backgroundl_channellnominalDHist (obs_x_channell)
RooDataHist: :background2_channellnominalDHist (obs_x_channell)

parameter snapshots

NominalParamValues = (nom_alpha_syst2=0[C],nom_alpha_syst3=0[C],nom_gamma_stat_channell_bin_0=400([C],
InitialValues = (alpha_syst2=0,alpha_syst3=0,gamma_stat_channell_lpin_0=1,gamma_stat_channell_bin_1=1,

named sets

ModelConfig_GlobalObservables: (nom_alpha_syst2,nom_alpha_syst3,nom_gamma_stat_channell_bin_0,nom_gam
ModelConfig NuisParams: (alpha_syst2,alpha_syst3,gamma_stat_channell_bin_0,gamma_stat_channell_bin_1)
ModelConfig_Observables: (obs_x_channell,weightVar, channelCat)

ModelConfig_POTI: (mu)

globalObservables: (nom_alpha_syst2,nom_alpha_syst3,nom_gamma_stat_channell_bin_0,nom_gamma_stat_chant
observables: (obs_x_channell,weightVar, channelCat)

generic objects

RooStats: :ModelConfig: :ModelConfig

3.3.2 Improvements Needed/Planned

The core modeling framework of RooFit is quite mature, though a number of optimizations are still planned. In
particular, for statistical models based on nominal and variational histograms, there is are challenges associated to
the interpolation between histograms (including the ability to handle simultaneous variation of multiple nuisance
parameters) and the handling of Monte Carlo statistical uncertainties in the histograms themselves (which are typically
correlated in a non-trivial way among the variational histograms for a particular Monte Carlo sample). Work on these
topics requires a careful dedicated effort, thus it is much more efficient if this effort is coordinated around a common
code-base. The Statistics Forum has chosen to organize this effort with the goal of making a HistFactory v2.

There are a number of discussions about the tools being provided by the combined performance groups for evaluating
systematics, these topics are outside of the scope of this document.

The issue of merging and “pruning” nuisance parameters from a model given the rapid growth of nuisance parameters
we are currently experiencing. This is the topic for a separate document, and suggestions made are expected to
propagate into the workplane the Statistics Forum is organizing for improvements to the modeling tools.

3.4 Good Practices

3.4.1 Good practices in model building

* control and validation regions [ Exo ]

3.4.2 Modeling systematics - Correlations

* Correlation modeling (prior and observed) [ Exo, Guide, some new material needed ]
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3.4.3 Modeling systematic uncertainties - shape vs rate

[ Exo, WV slides |

3.4.4 Modeling systematics - 2point discussion

[ Guide to PLL but needs updating ]

3.4.5 Modeling systematcs - pruning and smoothing

[ Exo ]

3.4.6 Modeling systematics - DOF

how many DOFs does your conceptual systematic have? [ Guide to PLL ]

3.4.7 Modeling uncertainties with increasing luminosity uncertainty

[FAQ]

3.5 Understanding computational aspects of the likelihood

3.5.1 Understanding computational performance

As probability models grow in complexity, the calculation time of likelihood functions can become a limiting factor.
Models expressed in RooFit allow the RooFit core code complete introspection in the model structure and can au-
tomatically apply a series of performance optimizations to make calculations more effient and thus allow for faster
calculations. Most of these techniques are applied automatically, few of them must be optionally activated. This sec-
tion outlines the essence of optimization techniques that are applied and serves to further the understanding of model
computation times in RooFit.

When are optimizations applied?

RooFit generally distinguishes two modes of operation - inside bulk operations (likelihood calculation, or toy event
generation) and outside bulk operations. Most optimizations are applied inside the context of a bulk operation, where
performance is more critical, and where more optimization opportunities exist as the use case of probability models is
more clearly spelled out. Bulk operations in RooFit always operate on a clone of the original pdf, allowing to make
non-resverrable use-case specific optimisation modifications to the model. The cloned model is discarded at the end
of the bulk operation

Analytical integrals where possible

When RooFit is used to specify probability density functions (e.g. a Gaussian in a real-valued observable x) rather
than as a probabillity model (e.g. a Poisson in a discrete-valued observable n), integrals must be explicitly calculated
to make such probability density functions unit-normalized. As RooFit pdfs have no intrinsic convention of which
of their variables are observables versus parameters, a calculation of a pdf as normalized probability density function
must always be accompanied with a ‘normalization set’, which defines the subset of pdf variables that must be interpret
as observables, and hence over which the expression must be normalized:
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w.factory ("Gaussian::g(x[-10,10],m[-10,10],s[3,0.1,10])™)

RooArgSet normset (xw.var ("x")) ;

Double_t g_normalized_wrt_x = w.pdf ("g")->getVal (normSet) ; // calculate g as pdf for,
—~observable x

When called in this form, a separate RooFit object is created of class RooRealIntegral that represents the integral
int_g(m,g) = Int g(x,m,g) dx over the defined range of variable x. RooFit function objects can advertise
and implement (partial) analytical integrals in any (sub)set of their variables, for the cases where these expressions are
analytically known. Whenever an integral over a pdf is needed in a likelihood evaluation (or other RooFit operation),
the RooFit integral representation object RooReallntegral will negotiate with the pdf if any suitable (partial) analytical
integrals exists that match the requeste integration, and use those. Any remaining partial integrals that can not be
integrated analytically, will be integrated numerically. When numerical integrals are used, information messages are
emitted on the command line, and some user configuration/intervention may be needed to optimize performance (see
section XXX on performance tuning for further details)

Integral representation objects that are used for pdf normalization purposes, as shown in the example above, are cached
and owned by the pdf that requires them - hence the negotiated optimal calculation strategy is not redetermined at every
call for a normalized pdf value, but kept for the lifetime of the pdf object, or until the pdf is structurally modified by
the user in which case it is discarded and will be recreated on demand later if needed.

Change tracking and lazy evaluation (likelihood calculation & normal use)

The output value of each RooFit function object, as calculated by the classes implementation of method
RooAbsReal::evaluate () is cached automatically in data member RooAbsReal::_value, when
RooAbsReal: :getVal () is called. A subsequent call to getVal () will simply return the previously calcu-
lated and cached value, unless it is detetermined that one or more of the inputs to the calculation has changed. RooFit
tracks such changes through client-server links it maintains between all components of a pdf (whenever a dependent
component of a RooFit function object is held in a data member of class RooRealProxy, RooListProxy or
RooSetProxy, such links are automatically initiated). Each link (and each proxy) indicates if the object it is mem-
ber of depends on the value or the shape of the server object. For real-valued objects, the shape of servers objects
relates to the boundaries of the allowed values for that object.

For example, for a Gaussian pdf constructed as follows

w.factory ("Gaussian::g(x[-10,10],m[-10,10],s[3,0.1,10])™")

the object RooGaussian::g will consider the objects RooRealVar::x, RooRealVar::m and
RooRealVar: :m as it servers, and the latter 3 objects will consider RooGaussian: :g as its client. When
RooGaussian: : g is constructed, it will indicate that it’s own value depends on the value of these three variables
(but not on the shape). [ The configuration of this dependency information is encoded in the constructors of the proxy
data members that hold x, m and g ]

The effect of that is that whenever one or more of the three variables changes its value, it will propagate a ‘value-
changed’ message to all its clients (in this case RooGaussian: : g), and this will set a ‘dirty’ flag on the value cache
of that object. The raising of this dirty flag will not automatically trigger a recalculation of the value of g, but merely
indicate that this must happen the next time g.getVal () is called, hence the name ‘lazy evaluation’.

Caching and lazy evaluation is of particular importance for normalization integrals: when the value of pdf g is re-
quested as a normalized probability density function w.r.t to observable x, e.g.

RooArgSet normset (xw.var("x")) ;
Double_t g_normalized_wrt_x = w.pdf("g")->getVal (normSet) ;

a separate object is created that represents the integral Int g(x) dx, which depends on the values of parameters m and
g, and the shape (range) of observable x, but not on the value of observable x.

When is caching and lazy evaluation applied?
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Caching and lazy evaluation is active by default on all RooFit objects, whether directly created on the command line
or in a workspace. Inside a likelihood function a slightly different strategy is applied - as a likelihood entails a series
of pdf evaluation where the value of the observable changes (in principle) every time there is no point in tracking
dependencies of direct or indirect pdf dependencies on dataset observables, as the result is such a check is already
predetermined - each one will need to be recalculated for every consecutive event. Hence for all pdf and function
components inside a likelihood that depend directly or indirectly on dataset observables, change tracking is disabled,
to save the time that is spent in this unnecessary tracking. The notable exception to this are the normalization integral
objects, which do not depend on the value of the dataset observables, but just on their range - these will remain in
cache/lazy-eval mode inside likelihood objects, and thus only be recalculated on the less frequent occastion that one
of the dependent model paremeters changes.

Constant term detection (likelihood calculation)

Certain parts of a probability model may depend only on parameter objects that are declared constant
(RooRealVar: :setConstant (kTRUE) ). While the constant flag does not prevent manual modification of such
a variable through a call to RooRealVar: :setValue (), parameters that are flagged as constant will not be mod-
ified by the minimizer algorithm during a likelihood minimization are thus effectively constant during a minimization
session. RooFit automatically detects all expressions in a likelihood that are effectively constant at the start of each
minimization session and precalculates and caches their value along with the dataset. For example, for a composite
pdf with signal and background

RooWorkspace w("w")
w.factory ("SUM: :model (fsig[0,1]*sig::Gausian(x[-10,10],m[-10,10],s[3]),
—bkg::Polynomial (x, {a0[0],al[1]l}))"™) ;

the background pdf bkg: :Polynomial has only constant parameters (a0 and al) hence its value is precalculated
for every value of x in the dataset of a likelihood, and effectively added as a column to the internal dataset. A message
to this effect is shown on the command line when the likelihood is initialized

When each event is loaded from the dataset in the likelihood calculation loop, the precalculated value of
bkg: :Polynomial is directly loaded in the value cache of that pdf, and it’s internal recalculation is skipped.
Higher-level objects that depend on these cached elements, SUM: :model in the example above, will then simply use
the cached expression.

For pdfs expressions with multiple layers of composition operations, it is possible that entire trees of expression
become constant. Consider for example

Here the background pdf is a sum of a general background and a peaking background that are first added together,
before it is added to the signal. In this scenario, three pdf components in the full expression are constant: peakbkg,
polybkg and sumbkg. In this particular scenario it is not needed to precalculate and cache all three pdfs: polybkg
and sumbkg do not need to be cached separately as all of their clients (in this case just one - SUM: : sumbkq)
exclusively depend on constant expressions, hence they are never needed during the pdf evaluation - therefore only
sumbkgq is precalculated and cached, and peakbkg and polybkg are completely deactivated during the likelihood
evaluation.

When is constant term optimization applied?

Constant term detection and precalculation only applies to likelihood calculations is automatically applied when
RooAbsPdf::fitTo () is called. If you set up the minimization yourself, it must be explicitly activated manu-
ally when you configure the minimizer

RooAbsRealx nll = pdf->createNLL (xdata,...) ;

RooMinimizer m(*nll) ;

m.optimizeConst (1) ; // This line activates constant term optimization
m.migrad() ;

m.hesse () ;

// etc

Cache-and-track optimization (likelihood calculation)
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Cache-and-track optimization is an extension of the concept of constant-term optimization that can further reduce
calculation times by exploiting typical likelihood usage patterns of minimization algorithms like MINUIT.

Apart from it’s setup phase, a likelihood minimization in Minuit (2) alternates two modes of operation: gradient
calculations - where one parameter is changed per likelihood call - and gradient descent - where all parameters are
changed for every likelihood call. For likelihoods with many parameters the gradient calculation calls dominate
MINUITSs likelihood evaluations as it requires N (parameter) calls to calculate the full gradient, whereas the gradient
descent phase typically takes O(3) calls, independent of the number of parameters. If in the majority of likelihood calls
from MINUIT only one parameter is changed, many component pdfs remain unchanged between likelihood calls, as
typically a small subset of all pdf components will depend on the single parameter that changed.

In cache-and-track configuration, in addition to the truly constant terms, all component pdfs of a SUM and PROD
composite models will be cached, as if they were constant, but a change tracker is included for these component that
determines if the cache needs to be updated later (i.e. when a parameter of the pdf has changed w.r.t to the values that
were used to calculate the cache contents). For the example pdf below, with only floating parameters in both signal
(m) and background ( a0, al)

RooWorkspace w("w")
w.factory ("SUM: :model (fsig[0,1]*sig::Gausian(x[-10,10],m[-10,10],s[3]),
—bkg::Polynomial (x, {a0[0,1],a1[0,11}))") ;

both sig and bkg components can be cache-and-tracked, which has the following effect on the likelihood evaluation
for the gradient calculation

gradient parameter

components cached

components recalculated

fsig sig,bkg model

m bkg sig,model
a0 sig bkg,model
al sig bkg,model

A clear saving is realized for the likelihood evaluations required for MINUITs gradient calculation, as only 1 or
2 of the 3 components pdfs need recalculation, instead of always all three of them, as would be required without
cache-and-track.

When is cache-and-track optimization applied?

Cache-and-track optimization only applies to calculations within a likelihood. As the efficiency of cache-and-track
optimization is highly dependent on the structure of the likelihood, it is not activated by default. To activate cache-and-
track optimization of the likelihood, change the value of the argument to RooMinimizer: :optimizeConst ()
from 1 to 2, or alternatively pass argument Opt imize (2) to RooAbsPdf::fitTo ().

Optimizing calculations with zero weights

In models that multiply pdf components (e.g. inside class PROD) it can happen that a product term evaluates to zero.
If this occurs, the product calculation for that event is terminated immediately, and remaining product terms are no
longer evaluated. Similarly, for weighted datasets (binned or unbinned), if the event weight is zero, the probability
model for that event is not calculated.

When is zero-weight optimization applied?

Always automatically applied
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3.5.2 Understanding issues with parallel calculation of likelihoods

The current RooFit version (v3.6x) has a simple built-in strategy to parallelize likelihood calculations over multiple
cores on the same host, To activate this option, add the option NumCPU (n) to either RooAbsPdf: :createNLL ()
or RooAbsPdf: : fitTo (). It is important to understand the limitations of the paralellization algorithm:

The invocation of NumCPU (N) splits the workload of the likelihood (or each top-level likelihood object in case the
top-level pdf is a STMUL) in N equal sizes by dividing the number of data events offered to each of the N subprocesses
in equal subsets. For unbinned datasets, the dataset is partitioned in N equal-size contiguous pieces. For binned
datasets (i.e. histograms). the data is partitioned in equal sizes with an interleaving algorithm since histograms can
be unevenly distributed. (Equal-size contiguous histogram partitions are prone to a substantial inbalance of partitions
with zero event counts).

While the protocol overhead for parallelization is low, there are two major factors that spoil the scaling of wall-time
speedup with the number of cores:

» Expensive (numerical) integral calculations required in pdfs. Integral calculations are currently not distributed,
but replicated among calculation threads.Hence if the total calculation time of a likelihood is dominated by
(numerical) integrals, rather than PDF evaluations, wall-time gains realized by parallelization will be limited

 Strongly heterogenous model structure. For wall-time scaling to be efficient, it is important that the workload can
be divided in N partitions that each require the very similar, and ideally the exact same, calculation time. If the
partitions end up not having very similar calculation times, the wall time will be dominated by the calculation
time of the longest partition, which easily frustrates scaling beyond N =2,3. Models that are prone to load-
imbalancing are those that have many binned dataset with variable and small sizes. For example the likelihood
calculations based on histogram with 1 or 2 bins is not easily distributed in a balanced way over 4 CPUs.

In practice, all binned likelihoods built i ATLAS/CMS are strongly heterogeneous and thus poorly scalable. Unbinned
ML fits, as typically executed in B-physics, are usually well-scalable. A new version of the RooFit parallel scheduler is
being developed that addresses the load balancing issues with a dynamic scheduling polocy for strongly heterogenous
pdfs, and is expected to be available late 2018, early 2019.

Also note that parallel calculated likelihood may return marginally different likelihood values, at the level of numeric
precision of the calculation, as the order in which likelihood contributions from the data points are summed is inher-
ently different. For marginally stable or unstable fit models, such small perturbations in the calculation may make the
difference between convergence and failure, but it is important to diagnose this properly - the cause of the problem is
the marginal stability, not the parallelized calculation.

3.5.3 Understanding the numeric precision and stability of calculations

In complex models it is not uncommon that limiting numeric precision becomes an issues and will lead to numerical
instability of calculations. Numerical problems can have many causes, and can manifest themselves in many different
forms. This section will focus only on issues arising from limited numeric precision arising in likelihood calculations,
and not on issues arising from building models from poor information that are intrinsically well calculable but contain
little useful information (e.g. template morphing models with low template statistics).

At what level of precision must the likelihood be calculable?

To understand when numeric precision in likelihood calculations becomes limiting it is important to understand how
likelihoods are used by (minimization) tools. As most frequentist statistics tools boil down to minimization problems
we will focus on what is needed for a stable minimization of a likelihood. At a fundamental level minimizers require
that the likelihood, it’s first and second derivative are continuous. While most likelihoods meet these requirements at
the conceptual level, numerical noise may spoil these features in their implementation. The most susceptible calcu-
lation of minimizers to noise is the numeric calculations of the first derivatives, evaluated as f(z) — f(z + dz)/9,
for comparively small values of §. Jitter in the likelihood function, introduced by numerical noise, may thus result
in wildly varying estimates of such derivatives when scanning over the parameters, if the frequency of the noise is
comparable in size to 6. In practice, an absolute precision at the level of 10 ~°, is the barely tolerated maximum level
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of noise for minimizers like MINUIT, with target precisions at 10 ~7 or 10 ~® often resulting in substantially faster
converge and minimization stability.

Sources of numeric noise in the likelihood

There are two common source of noise in the likelihood: limited precision numeric integration of pdfs, and cumulative
rounding/truncation effects of likelihoods.

Numeric integration noise

Numeric integration of functions is a notoriously hard computational problem, for which many algorithms exist. For
reasons of speed and stability, analytical integrals are strongly preferred, and RooFit classes provide these when avail-
able. Nevertheless for many classes of functions no analytical expressions exist, and RooFit will substitute a numerical
calculations. When considering numeric integrals, one-dimensional and multi-dimensional integrals represent chal-
lenges of a vastly different magnitude.

Numeric noise in I-dimensional integrals.

Excellent numeric algorithms exist for one-dimensional integration that not only estimate the integral, but also its
accuracy well, hence letting the (often iterative) integration algorithm reach the target precision for every integral in
a reasonable amount of computing time. For well-behaved functions (i.e. no singularities or discontinuities) RooFits
default algorithm, the adaptive Gauss-Kronrod integration, will rarely cause numeric problems with the default target
precision of 10 ~7 (considered both absolute and relative).

However, if the integrands are ill-suited, e.g. consider a histogram-shaped function with multiple discontinuities,
integration algorithms can fail in various way: its error estimate may underestimate the true error, leading to larger
variations of the calculated integral as function of the integrands parameter than the target tolerance, resulting in
intolerable numeric noise in the likelihood. Alternatively, the algorithm may start ‘hunting’, switching forth and back
between levels of iteration where it declares convergence at the requested level of precision, again as function of
the integrands parameters, leading to spikes or jumps in the calculated integral. In particularly adaptive algorithms,
that recursively subdivide the domain of the integral in smaller pieces, are susceptible to all of these failings with
every additional subdivision. If the integrand is not pathological - the first defence against numeric instability from
integrands is simply to increase the target precision. If that does not result in improvements and/or if the function has
‘difficult’ features, it may be advisable to try non-adaptive integration algorithms, which may require more function
calls to converge, but are generally more stable in their result as function of the model parameters.

Numeric noise in multi-dimensional integrals.

Numeric integration in more than one dimension is notoriously hard, with an unfavorable tradeoff between comput-
ing time and numeric precision. The best solution is to avoid numeric multi-dimensional integration, by considering
the feasibility of partial analytical integrals (RooFit explicitly supports hybrid analytical/numeric integrals in multiple
dimensions). If this is not feasible, some careful tuning of algorithms is usually required, as multi-dimensional inte-
grals rarely run at a satisfactory working point concerning speed and precision out of the box. For integrals of low
dimensions (2,3), adaptive cubature integrals can be considered (the multidimensional equivalent of Gauss-Kronrod),
this is also the default in RooFit. However a ‘mesh’ in 2/3 dimensions is harder to construct than a 1-dimensional
segmentation, and a reliable and fast convergence is only obtained for very smooth functions in all integrated dimen-
sions. If multidimensional integrands are spiky, have ridges (e.g. Dalitz plots), near-singularies etc, or have many
more than 2 dimensions, cubature algorithms fail dramatically, often vastly overreporting the achieved precision, and
thus causing likelihoods that embed these integrals to fail in minimization. A last resort for such integrals are Monte
Carlo methods, that are generally robust against most difficult features, though not against extremely narrow spikes
and true singularities, and work in many dimensions. The main drawback of Monte Carlo method is that it requires
very large number so function samples (up to millions in many dimensions), and that the accuracy is often not reliably
calculated, resulting often in variable and insufficient precisions for likelihood minimization purposes.

As the problem in likelihood minimization due to multidimensional normalization integrals is often not the precision
of the integral per se, but rather the variability of the outcome of repeated calculations at slightly different model
parameter values, an explicit regularization strategy can help achieve stability: instead of using the calculation of the
numerical integral directly, it is cached in a (low)-dimensional histogram as function of the integrands parameters. In
that way, the numeric integrals are then not used directly in likelihood, but rather values taken from a histogram that
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interpolates integral values between sampled points on a fixed grid in parameter space. In this mode of operation,
the integrals used in the likelihood vary in a smooth and reliable (in the sense of repeatable) way as function of
the integrands parameters, resulting in a stable fit, even if the integral does not have the required accuracy. This
interpolation strategy can be activated in RooFit with a small intervention at the pdf level, as detailed technically here
<X>. The RooFit implementation of cached and interpolated integrals employs a lazy filling strategy, hence no large
performance penalty is occurred on the first evaluation of the likelihood.

Persisting result of expensive (parameterized) numeric integrals

As the calculation of accurate multi-dimensional numeric integrals (parameterized or not) can be computationally very
expensive, it is convenient is such numeric results can be persisted along with the model in a transparent and easy-to-
use way. This is possible with ‘expensive object cache’ of the RooFit workspace. RooFit objects in the workspace
may declare expensive (numeric) internal (partial) results as ‘expensive’ and worth persisting in the ‘expensive object
cache’. This is done automatically, if a pdf implements this functionality, and ensures that expensive calculations are
kept for the lifetime of the workspace in memory.

However the expensive object cache is also persisted as part of the workspace, thus if a pdf in a workspace with expen-
sive integrals is evaluated before the workspace is persisted, this will trigger a filling of the expensive object cache, and
the cached results will be persisted along with the pdf. Any user that subsequently opens the workspace will benefit
from the persisted results of the expensive calculations. All expensive objects have their dependencies automatically
tracked, hence do not invalidate the generality of the model in the workspace. If a (parameter) configuration is entered
that does not correspond to the cached result, the expensive object is then recalculated (and cached).

Likelihood noise from limited IEEE floating point precision and cumulative rounding/truncation effects

A second common issue with numeric precision in likelihood arises from a mismatch between the IEEE floating format
that computers employ, which encode a fixed relative level of precision, and the concept of the (profile) likelihood,
where an absolute level of precision is meaningful.

IEEE double precision floating points consist of a sign bit, a 52-bit ‘fraction’, a number with approximately 16 decimal
digits of precision, and an 11-bit exponent, that encodes the magnitude of the number. If the number stored is O(1), the
exponent is 2°, and the precision of the fraction component also maps to a 16-digit absolute precision. If the number
stored is >>1, the magnitude is absorbed in the exponent part of the number (valued 2%, where N is chosen such that
the fraction is as close as possible to O(1)). The result is that the fraction part will encode the 16 most significant
digits of the number and will keep the relative precision of the stored number constant, but the absolute precision will
degrade with the magnitude of the number. For example, a likelihood stored in an IEEE double of O(1) has an absolute
stored precision of 10 16, an double of O(10 ) has an absolute precision of 10 ~2, and a double of O(10 ') has an
absolute precision of O(1).

In all frequentist-style statistical analysis of the likelihood, the fundamental concept underlying parameter estima-
tion, error analysis, confidence interface is the profile likelihood A(z|u) = igi}z ;, or equivalently in log-form:
log(A(z|p)) = log L(z|u) — log L(z|mu). This quantity is by construction O(1) in the region of interest, since
for mu equal to i it is zero by definition. The profile likelihood is always interpreted in an absolute sense in frequen-
tists statistics, e.g. a rise of 0.5 absolute unit w.r.t zero of the profile likelihood constitutes the asyptotic frequentist
confidence interval on the parameter mu. Thus for any numeric calculation of the profile likelihood the absolute
numeric precision of A is the relevant metric. In practice MINUIT needs an absolute precision of the likelihood of
0(10 ~%) to O(10 ~#) to function reliably. If MINUIT were to directly minimize the profile likelihood, IEEE storage
precision would never be a limiting factor, since it is O(10 ~6) for number of O(1).

However, for obvious practical reasons MINUIT minimizes the likelihood rather the profile likelihood, since the
denominator of the profile likelihood, L(z|jz) is by definition not known at the beginning of the minimization, since it
is the outcome of the operation. As the absolute value of the likelihood has no statistical meaning (unlike the profile
likelihood), its practical value is unconstrained, and could be large. If it is very large, i.e. larger than 10° , needed
information on the absolute precision is lost: less than 8 digits of absolute precision are retained, Once the likelihood is
converted to a profile likelihood, it retains that reduced absolute precision, and any analysis done in that interpretation
(where it is irrelevant for the precision whether the denominator of the PLL is actually subtracted or not in MINUIT),
may have insufficient precision for MINUIT to converge. If the likelihood is seen as a monolithic entity, this loss of
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precision is unavoidable, however in practice, likelihoods are often composite as the result of a joint fit, and some
precision information may be rescued with an intervention in the summation process.

Consider the following examples of a composite likelihood that sums the component likelihoods of a signal region
that measures parameter of interest u, and is sensitive to nuisance parameter o, and a control region that measures
nuisance parameter o.

1. If Lgig(pt, ) is O(1) and L1 (v) is O(1), then the Liotar (i, o) is O(1) and there is no issue concerning precision.

2. If Ly (p, @) is O(1) and Legi () is O(10 10), then the Liotar (11, ) is O(10 %) and important precision is lost in
the total.

3. If Lgig (1, @) is O(10 1°) and :math*:L_mathrm{ctl}(alpha)‘ is O(10 '), then the L:total(y, o) is O(10 '°) and
important precision is lost in the total.

Scenarios A and C require little discussion: in scenario A nothing needs to be done as there is no problem, whereas in
scenario C nothing can be done, as the required precision is already lost at the component level. The interesting case is
scenario B: here information lost at the level where component likelihoods are combined with fixed relative precision,

e.g.
1,000000X X X X X X X XX X + 1.000.000.001, 0000000 = 1.000.000.002, 000000X

If instead of combining the component likelihoods, as shown above, they are combined, after an appropropriately
chosen offset is first substracted from each of them

Ltotal = (Lsig - Lsigoffset) + (Lctl - Lctloffset)
ie.
(1,000000X X X X X X X X X X — 1) 4+ (1.000.000.001, 0000000 — 1.000.000.001) = 2,000000X X X X X X X X

then the precision of the first likelihood is retained in the summed likelihood. Note that some of the precision of the
2nd (large-valued) control region likelihood remains lost, but that is unavoidable since it was never available at the
level of likelihood combinations. The net result is that such a per-component likelihood offsetting prior to combining
component likelihood salvages the numeric precision of the small-valued component likelihoods , or conversely, that
adding large-valued likelihood components - that intrinsically have poor absolute precision - do not deterioriate the
information contained in other likelihood components in a combination.

Summation with likelihood offsetting is conceptually similar to combining profile likelihoods, with the important dis-
tinction that for the issue of numeric precision retention it is not important that the subtracted offset corresponds to
the precise minimum of the likelihood, but only has the same order of magnitude. Such order-of-magnitude approxi-
mations of the likelihood of each component can be obtained in practice by using the likelihood values at the starting
point of the minimization process.

When is likelihood offsetting applied?

For reasons of backward compatibility, likelihood offsetting is not applied by default in RooFit, It can be activated by
adding Offset (kTRUE) to RooAbsReal: :createNLL () or RooAbsReal::fitTo (), and users are rec-
ommended to do this for all non-trivial fits.

RooFit deploys further strategies to limits loss of numeric precision inside component likelihoods. As a component
likelihood consist of repeated additions of per-event likelihoods to the running sum, loss of precision may occur due
to cumulative rounding effects in the repeated addition. The cumulative error of such repeated regular additions scales
with \/rm) for adding random numbers, but can be proportional to ngyent in a worst-case scenario. Instead if
regular summation inside likelihoods the Kahan summation procedure is used, which keeps a second double preci-
sion number that tracks a running compensation offset, and results in a maximal loss of precision that is small and
independent of ngyen.

When is Kahan summation applied?

Kahan summation is always applied when likelihoods are repeatedly summed.
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CHAPTER 4

Tools for Statistical Tests and Inference

4.1 Frequentist

4.1.1 Methodology

The recommended frequentist methodology is based on the profile likelihood ratio as a test statistic with
the corresponding modifications made to be appropriate for discovery, 1-sided upper-limits, and measure-
ments~cite{ Cowan:2010js}. The procedure for the mode of search and 1-sided upper-limits based on CLs~cite{CLs}
is further documented in Ref.~cite{ ATLAS:2011tau} and Ref.~cite{Recommendations}. The extension of these rec-
ommendations for measurement problems (68% and 95% confidence intervals in a single parameter or multiple pa-
rameters with or without physical boundaries) is described in Ref.~cite{ ExtendedRecommendations}.

4.1.2 Upper-Limits

In the case of upper limits we start with the statistical model f(data|u,a), where p is the parameter of interests
(like a cross-section, signal yield, or signal strength) and « are the nuisance parameters. In most cases, we have the
physical boundary p > 0, which motivates the use of the CLs procedure for 1-sided upper-limits in order to avoid
the “sensitivity problem” (the possibility of excluding arbitrarily small values of 1+ where we have no sensitivity due
to downward fluctuations). The profile likelihood ratio g,, (as defined in Ref.~cite{ Cowan:2010js}) is used as a test
statistic. The p-values for the u (s+b) and i = 0 (b-only) hypotheses can be evaluated either with ensembles of
pseudo-experiments (toy Monte Carlo) or by using the asymptotic distributions. Both techniques are non-trivial to
code. The toy Monte Carlo approach which requires dealing with randomizing the global observables associated
to nuisance parameters in a frequentist way (as opposed to the mixed frequentist-Bayesian hybrid procedure that is
implemented in several tools) and the ‘’profile-construction” for making the multi-dimensional Neyman-Construction
computationally tractable~cite{ Chuang:2000tba,Cranmer:2005hi,ATLAS:201 1tau,Demortier}.

The RooStats tool HypoTest Inverter performs the “hypothesis test inversion” of the Neyman-Construction, and
can be configured to use either FrequentistCalculator (toy Monte Caro) or AsymptoticCalculator
(asymptotics) to calculate p-values. The FrequentistCalculator can use several test statistics, but for upper-
limits one uses the ProfileLikelihoodRatioTestStat to calculate the 1-sided profile-likelihood ratio test
statistic g,,. The RooStats tool FrequentistCalculator implements the fully-frequentist p-value calculation
based on toys Monte Carlo with the recommended treatment of global observables and the profile-construction.
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Profile likelihood ratio calculator

using the RooStats::ProfileLikelihoodCalculator from the model and data stored in model.root

First open the ROOT file

In [1]: TFilex f = TFile::Open("model.root")

RooFit v3.60 —— Developed by Wouter Verkerke and David Kirkby
Copyright (C) 2000-2013 NIKHEF, University of California & Stanford University
All rights reserved, please read http://roofit.sourceforge.net/license.txt

Retrieve the workspace

In [2]: RooWorkspacex w = (RooWorkspacex)f->Get ("w")
w->Print () ;

RooWorkspace (w) w contents

variables

RooProdPdf: :model[ model_SR * model _CR ] = 0.00144134
RooPoisson: :model_CR[ x=Nobs_CR mean=Nexp_CR ] = 0.0281977
RooPoisson: :model_SR[ x=Nobs_SR mean=Nexp_SR ] = 0.0511153

functions

RooFormulaVar: :Nexp_CR[ actualVars=(tau,B) formula="tauxB" ] = 200
RooFormulaVar: :Nexp_SR[ actualVars=(mu,S,B) formula="muxS+B" ] = 30
datasets

RooDataSet: :observed_data (Nobs_SR,Nobs_CR)

parameter snapshots

ModelConfig___snapshot = (mu=1)

named sets

ModelConfig NuisParams: (B)
ModelConfig_Observables: (Nobs_SR, Nobs_CR)
ModelConfig_POI: (mu)
ModelConfig__snapshot: (mu)

obs: (Nobs_SR, Nobs_CR)

generic objects

RooStats: :ModelConfig: :ModelConfig

Retrieve the ModelConfig and the observed data Together these uniquely define the statistical problem

In [3]: RooAbsDatax data = w->data ("observed_data")
RooStats: :ModelConfig* mc = (RooStats::ModelConfigx) w->obj("ModelConfig") ;
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Instantiate a Profile Likelihood interval calculator
In [4]: RooStats::ProfileLikelihoodCalculator plCalc (xdata, *mc);
Calculate the 90% C.L. interval

Note that Profile Likelihood Ratio is always a two-sided interval where the definition of the interval is always uniquely
defined by the technique hence we only need to define the CL.

In [5]: plCalc.SetConfidencelLevel (0.90);
RooStats::LikelihoodIntervals interval = plCalc.GetInterval();

[#1] INFO:Minization -- createNLL: caching constraint set under name CONSTR_OF_PDF_model_FOR_OBS_Nob:
[#0] PROGRESS:Minization —— ProfileLikelihoodCalcultor::DoGLobalFit - find MLE

[#0] PROGRESS:Minization —-- ProfilelLikelihoodCalcultor::DoMinimizeNLL - using Minuit / Migrad with st
[#1] INFO:Minization -- RooMinimizer::optimizeConst: activating const optimization

[#1] INFO:Minization -- The following expressions will be evaluated in cache-and-track mode: (model.

[#1] INFO:Minization --
RooFitResult: minimized FCN value: 6.10022, estimated distance to minimum: 3.4662e-09

covariance matrix quality: Full, accurate covariance matrix
Status : MINIMIZE=0

Floating Parameter FinalValue +/- Error

B 2.0000e+01 +/- 1.41e+00
mu 4.9998e-01 +/- 5.18e-01

Print the result

In [6]: RooRealVar+* poi (RooRealVar*) mc—->GetParametersOfInterest () ->first();

double lowerLimit = interval->LowerLimit (*poi);

double upperLimit = interval->UpperlLimit (xpoi);

cout << "RESULT: " << 100«xplCalc.Confidencelevel() << "% interval is : ["<< lowerLimit << ",
RESULT: 90% interval is : [-0.27595, 1.44104]

Use the visualization tool of the PLC to show how the interval was calculated

In [7]: RooStats::LikelihoodIntervalPlot xplot = new RooStats::LikelihoodIntervalPlot (interval);
//plot—->SetNPoints (50); // Use this to reduce sampling granularity (trades speed for preci.
plot—->Draw ("TF1"); gPad->Draw();

[#1] INFO:Minization —-- RooProfilelLL::evaluate(nll_model_observed_data_Profile[mu]) Creating instance
[#1] INFO:Minization -- RooProfilelLL::evaluate(nll_model_observed_data_Profile[mu]) determining minir
[#1] INFO:Minization —- RooProfileLL::evaluate (nll_model_observed_data_Profile[mu]) minimum found at
Info in <TCanvas::MakeDefCanvas>: created default TCanvas with name cl
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- log A{mu)

D 1
-1 -0.5 2 25 3
mu
In [ ]1:
CLS limit calculation
Open the ROOT file
In [1]: TFilex f = TFile::0Open("model.root")
RooFit v3.60 —- Developed by Wouter Verkerke and David Kirkby

Copyright (C) 2000-2013 NIKHEF, University of California & Stanford University
All rights reserved, please read http://roofit.sourceforge.net/license.txt

Retrieve the workspace

In [2]: RooWorkspacex w = (RooWorkspacex) f->Get ("w")
w—>Print () ;

RooWorkspace (w) w contents

variables

RooProdPdf: :model[ model_SR * model _CR ] = 0.00144134
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RooPoisson: :model_CR[ x=Nobs_CR mean=Nexp_CR ] = 0.0281977
RooPoisson: :model_SR[ x=Nobs_SR mean=Nexp_SR ] = 0.0511153
functions

RooFormulaVar: :Nexp_CR[ actualVars=(tau,B) formula="tauxB" ] = 200
RooFormulaVar: :Nexp_SR[ actualVars=(mu,S,B) formula="muxS+B" ] = 30

datasets

RooDataSet: :observed_data (Nobs_SR, Nobs_CR)

parameter snapshots

ModelConfig___snapshot = (mu=1)

named sets

ModelConfig_NuisParams: (B)
ModelConfig_Observables: (Nobs_SR, Nobs_CR)
ModelConfig POI: (mu)
ModelConfig___snapshot: (mu)

obs: (Nobs_SR, Nobs_CR)

generic objects

RooStats: :ModelConfig::ModelConfig

Retrieve the ModelConfig for the S+B hypothesis

Retrieve the ModelConfig and the observed data. Together these uniquely define the statistical problem

In [3]: RooAbsData* data = w->data("observed_data")
RooStats: :ModelConfigx sbModel = (RooStats::ModelConfig*) w->obj("ModelConfig") ;

Construct a ModelConfig for the B-only hypothesis

For a CLS-style limit calculation (hypothesis test inversion) we need an explicit specification of the background-only
hypothesis == another RooStats::ModelConfig that describe the B-only scenario

In [4]: RooStats::ModelConfigx bModel = (RooStats::ModelConfigx) sbModel->Clone ("BonlyModel")

Here we take a little shortcut from universality by assuming that the POI=0 scenario corresponds to the background-
only scenario

Set value POI parameter to zero

In [5]: RooRealVar* poi = (RooRealVarx*) bModel->GetParametersOfInterest ()->first();
poi->setVal (0) ;

Configure bModel to encode current poi=0 scenario as its hypothesis
In [6]: bModel->SetSnapshot ( *poi );

NB: To make CLS-style hypothesis calculation macros truly universal workspace files should contain both ModelCon-
figs upfront
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Construct an hypothesis p-value calculator

i.e the calculation of p(sbModel) and p(bModel) for the observed data

Instantiate hypothesis testing calculator assuming asymptotic distributions of the profile likelihood ratio (PLR) test
statistic. This calculator is fast because it does not need to generate toy data to obtain the distribution of the PLR under
either hypothesis. It is however only valid at sufficiently high statistics.

In [7]: RooStats::AsymptoticCalculator asympCalc (xdata, =*bModel, +*sbModel);

[#0] PROGRESS:Eval -- AsymptoticCalculator::Initialize...

[#0] PROGRESS:Eval -- AsymptoticCalculator::Initialize - Find best unconditional NLL on observed daf
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

* ok ok ok ok k ok ok kk

* % 1 **SET PRINT 0

Kok kK Kok kK ok Kk
Kok kK Kk kK kK
* % 2 x»xSET NOGRAD
Kok kK Kok kK ok Kk

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 2.00000e+01 1.00000e+01 0.00000e+00 2.00000e+02
2 mu 0.00000e+00 5.00000e-01 -1.00000e+00 1.00000e+01
Kk ok kK kK kK x
* % 3 *xSET ERR 0.5
Kk ko kK Kk ok k
Kk ok kK kK kK x
* % 4 xxSET PRINT 0
Kok Kk kK Kk ok x
Kk ok kK kK kK x
* % 5 *xSET STR 1
Kk ko Kk kK ok ok x
Kk ok kK Kk kK x
* % 6 **MIGRAD 1000 1

*ok kK Kk kK ok ok
MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=6.10022 FROM MIGRAD STATUS=CONVERGED 35 CALLS 36 TOTAL
EDM=8.42546e-08 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 2.00000e+01 1.41405e+00 4.02441e-05 -3.10839e-03
mu 4.99854e-01 5.17947e-01 2.34970e-04 -2.19045e-03
ERR DEF= 0.5
AsymptoticCalculator::EvaluateNLL - value = 6.10022 fit time : Real time 0:00:00, CP time 0.100
[#0] PROGRESS:Eval —-- Best fitted POI value = 0.499854 +/- 0.517947
[#0] PROGRESS:Eval -- AsymptoticCalculator: Building Asimov data Set
[#1] INFO:InputArguments —-- AsymptoticCalculator: Asimov data will be generated using fitted nuisance
MakeAsimov: Setting poi mu to a constant value = 0

MakeAsimov: doing a conditional fit for finding best nuisance values
*kkhkkhkkkkkkk*k
* % 1 *%SET PRINT 0
*kkhkkkkkk kK
*kkhkkkkkkhkkk*k
* % 2 x»xSET NOGRAD
*kkhkkkkkk kK
PARAMETER DEFINITIONS:
NO. NAME VALUE STEP SIZE LIMITS
1B 2.00000e+01 1.41405e+00 0.00000e+00 2.00000e+02
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* ok ok ok ok ok ok ok ok ok

* % 3 x«SET ERR 0.5

* Kk ok ok ok kkkkk

* ok ok ok ok ok ok ok ok x

* % 4 xxSET PRINT 0

* Kk ok ok Kk k ok kkk

* ok ok ok ok ok ok k ok x

* % 5 %*xSET STR 1

* Kk ok ok ok k ok kkk

* ok ok ok ok ok ok ok ok ok

* % 6 *+*MIGRAD 500 1
* Kk ok ok ok k ok ok ok ok

MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=6.62242 FROM MIGRAD STATUS=CONVERGED 12 CALLS 13 TOTAL
EDM=6.33774e-06 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 2.04511e+01 1.36334e+00 4.11568e-05 -1.11886e-01

ERR DEF= 0.5
fit time Real time 0:00:00, CP time 0.000

Generated Asimov data for observables RooArgSet:: = (Nobs_SR,Nobs_CR)
[#0] PROGRESS:Eval -- AsymptoticCalculator::Initialize Find best conditional NLL on ASIMOV data set
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

*ok kK Kok kK ok Kk
* 7 *xSET PRINT 0
*ok kK k kK ok Kk

*ok kK Kok kK ok ok

* 8 *xSET NOGRAD

Kok k ok Kk k kK ok Kk

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 2.04511e+01 1.36334e+00 0.00000e+00 2.00000e+02
* Kk ok ok ok k ok ok k Kk
* 9 *xSET ERR 0.5

* Kk ok kkkkkkk

* kk ok kk ok ok kk

* % 10 **SET PRINT 0

* Kk ok k ok k ok ok ok ok

* ok ok ok kk ok ok kk

* * 11 **SET STR 1

* Kk ok k ok k ok ok kk

* ok ok ok ok k ok ok kk

* % 12 *»*MIGRAD 500 1
* Kk ok ok k ok ok ok ok ok

MIGRAD MINIMIZATION HAS CONVERGED.

FCN=6.01169 FROM MIGRAD STATUS=CONVERGED 13 CALLS 14 TOTAL
EDM=5.60203e-19 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 2.04511e+01 1.36341e+00 0.00000e+00 -4.70409e-08
ERR DEF= 0.5
AsymptoticCalculator::EvaluateNLL - value = 6.01169 for poi fixed at = 0 fit time

Configure calculator for a limit (=one-sided interval)

In [8]: asympCalc.SetOneSided(true);
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Construct an hypothesis test inverter

i.e. a tool that can calculate the POI value for which (in this case) CLS==p(sbModel)/(1 — p(Model)) takes a certain
value. This inversion requires a scan over possible values of .

In [9]: RooStats::HypoTestInverter inverter (asympCalc);

[#1] INFO:InputArguments —- HypoTestInverter —-—--- Input models:
using as S+B (null) model : ModelConfig
using as B (alternate) model : BonlyModel

Statistical configuration of hypothesis test inverter

In [10]: inverter.SetConfidencelLevel (0.90);
inverter.UseCLs (true) ;

Technical configuration of hypothesis test inverter

In [11]: inverter.SetVerbose (false);
inverter.SetFixedScan (50,0.0,6.0); // set number of points , xmin and xmax

Perform calculation of limit

In [12]: RooStats::HypoTestInverterResultx result = inverter.GetInterval();

[#1] INFO:Eval -- HypoTestInverter::GetInterval - run a fixed scan

[#1] INFO:ObjectHandling —-- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(
[#1] INFO:Eval —-- AsymptoticCalculator::GetHypoTest: — perform an hypothesis test for POI ( mu ) =
[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest - Find Dbest conditional NLL on OBSERVED dat
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

* ok Kk ok ok ok ok ok ok ok

* * 13 **SET PRINT 0

Kk ok kK kK kK x
Kk ok kK Kk kK Kk
* % 14 xxSET NOGRAD
Kk ok ok Kk kK kK x

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 2.00000e+01 1.41405e+00 0.00000e+00 2.00000e+02
* h ok ok ok k ok ok kk
* 15 **SET ERR 0.5

* Kk ok ok ok k ok ok ok ok

* h ok ok kk ok ok k Kk

* % 16 »*SET PRINT 0

* Kk ok kkkk ok ok ok

* h ok ok kk ok ok kk

* * 17 **SET STR 1

* Kk ok ok kkkokkk

* h ok ok ok k ok ok kk

* % 18 **MIGRAD 500 1
* Kk ok ok ok kkk ok ok

MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=6.62242 FROM MIGRAD STATUS=CONVERGED 12 CALLS 13 TOTAL
EDM=6.33786e-06 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 2.04511e+01 1.36334e+00 4.11568e-05 -1.11887e-01
ERR DEF= 0.5
AsymptoticCalculator::EvaluateNLL - value = 6.62242 for poi fixed at = 0 fit time : Real time
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[#0] PROGRESS:Eval —--— OBSERVED DATA : gmu = 1.0444 condNLL = 6.62242 uncond 6.10022
[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest —-- Find Dbest conditional NLL on ASIMOV data
AsymptoticCalculator: :EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

* ok Kk ok ok ok ok kK ok

* x

19 x*xSET PRINT 0

*kk Kk Kk KKk kKKK

* ok Kk ok ok ok ok ok ok ok

* x

20 **SET NOGRAD

kKR KkKk Kk kKK

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 2.04511e+01 1.36334e+00 0.00000e+00 2.00000e+02

* ok Kk ok ok ok ok ok okox

* x

21 *xSET ERR 0.5

kk Kk kK Kk Kk kKK

* ok Kk ok ok ok ok koK x

* *

22 *%*SET PRINT 0

Kk kK Kk kK Kk Kk kKK

* ok Kk ok ok ok ok ok ok ok

* x

23 *xSET STR 1

kk Kk kK Kk kKKK

* ok Kk ok ok ok ok ok ok ok

* *

24 xxMIGRAD 500 1

Kk kK Kk kK Kk kKK Kk

MIGRAD MINIMIZATION HAS CONVERGED.

FCN=6.01169 FROM MIGRAD STATUS=CONVERGED 13 CALLS 14 TOTAL
EDM=2.67628e-16 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 2.04511e+01 1.36341e+00 0.00000e+00 -1.02818e-06
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 6.01169 for poi fixed at = 0 fit time : Real time
[#0] PROGRESS:Eval —- ASIMOV data gmu_A = 2.41585e-13 condNLL = 6.01169 uncond 6.01169
[#1] INFO:InputArguments —-- Minimum of POI is -1 is different to alt snapshot 0 - using standard g a:
[#1] INFO:Eval —-- Using one-sided gmu - setting gmu to zero muHat = 0.499854 muTest = O
[#0] PROGRESS:Eval -— poi = 0 gmu = 0 gmu_A = 2.41585e-13 sigma = 0 CLsplusb = 0.5 CLb = 0.5 CLs =
[#1] INFO:ObjectHandling —-- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(
[#1] INFO:Eval -- AsymptoticCalculator::GetHypoTest: — perform an hypothesis test for POI ( mu ) =
[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest - Find Dbest conditional NLL on OBSERVED dat
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1
*kkkhkkkkkhkkkk

* % 25 **SET PRINT 0

Ak KhkhkKkk kKKK

Kk ok Kk kkkkkkk

* x

26 **SET NOGRAD

Ak Kk kKkKk Kk kKK

PARAMETER DEFINITIONS:

NO.  NAME VALUE STEP SIZE LIMITS
1B 2.00000e+01 1.41405e+00 0.00000e+00 2.00000e+02

*kkhkkhkkkkkkk*k

*x 27 **SET ERR 0.5

*hkkhkkkkkk kK

*kkkkkkkkk*k

%% 28 #*SET PRINT 0

*hkkhkkkkkkkk

*kkkkkkkkk*k

* % 29 **SET STR 1

*hkkhkkkkkkkk
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* ok ok ok ok ok ok ok ok ok

* % 30 **MIGRAD 500 1

* Kk ok ok ok kkkkk

MIGRAD MINIMIZATION HAS CONVERGED.

MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=6.38893 FROM MIGRAD STATUS=CONVERGED 12 CALLS 13 TOTAL
EDM=1.61128e-06 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 2.03237e+01 1.36321e+00 4.06743e-05 -5.62642e-02
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 6.38893 for poi fixed at = 0.122449 fit time : Re
[#0] PROGRESS:Eval —-— OBSERVED DATA : gmu = 0.577412 condNLL = 6.38893 uncond 6.10022
[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest —-- Find Dbest conditional NLL on ASIMOV data
AsymptoticCalculator: :EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

kk Kk kK KK KKK

* % 31 **SET PRINT 0

Kok k ok Kk kK ok Kk
*ok kK Kk kK ok Kk
* * 32 x*xSET NOGRAD
Kok kK Kk kK ok Kk

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 2.03237e+01 1.36321e+00 0.00000e+00 2.00000e+02
* ok Kk ok ok k ok ok kk
* % 33 **xSET ERR 0.5

* Kk ok ok ok k ok ok kk

* Kk ok ok kk ok ok k Kk

* * 34 **SET PRINT 0

* Kk ok ok Kk kkkkk

* k ok ok Kk k ok ok k Kk

* % 35 x*xSET STR 1

* Kk ok ok ok kkkkk

* h ok ok kk ok ok k Kk

* % 36 **MIGRAD 500 1
* Kk ok ok Kk kkkkk

MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=6.04396 FROM MIGRAD STATUS=CONVERGED 12 CALLS 13 TOTAL
EDM=3.23641le-11 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 2.03456e+01 1.36322e+00 3.98200e-05 -2.52280e-04
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 6.04396 for poi fixed at = 0.122449 fit time : Re
[#0] PROGRESS:Eval —-— ASIMOV data gmu_A = 0.0645416 condNLL = 6.04396 uncond 6.01169
[#1] INFO:Eval -- Using one-sided gmu - setting gmu to zero muHat = 0.499854 muTest = 0.122449
[#0] PROGRESS:Eval -— poi = 0.122449 gmu = 0 gmu_A = 0.0645416 sigma = 0.481987 CLsplusb = 0.5 CLb -
[#1] INFO:ObjectHandling —-- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(
[#1] INFO:Eval -- AsymptoticCalculator::GetHypoTest: — perform an hypothesis test for POI ( mu ) =
[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest - Find Dbest conditional NLL on OBSERVED dat
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1
*kkkhkkkkkkk*k

* % 37 x»xSET PRINT 0

Kk khkKkk Kk kKK
Kk ok Kk ok ok ok ok kkk

* 38 **SET NOGRAD

Ak Kk kKkKk kKKK
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PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 2.00000e+01 1.41405e+00 0.00000e+00 2.00000e+02
* ok ok ok ok ok ok ok ok ok
* % 39 *xSET ERR 0.5

* Kk ok ok Kk k ok kkk

* ok ok ok ok ok ok k ok x

*x 40 **SET PRINT 0

* Kk ok ok ok k ok kkk

* ok ok ok ok ok ok ok ok ok

* % 41 *xSET STR 1

* Kk ok ok ok k ok ok ok ok

* ok ok ok ok ok ok ok kk

* % 42 **MIGRAD 500 1
* Kk ok ok ok kkkkk

MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=6.22814 FROM MIGRAD STATUS=CONVERGED 12 CALLS 13 TOTAL
EDM=2.67487e-07 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 2.02082e+01 1.36268e+00 4.03604e-05 -2.28755e-02
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 6.22814 for poi fixed at = 0.244898 fit time : Re
[#0] PROGRESS:Eval -- OBSERVED DATA : gmu = 0.255836 condNLL = 6.22814 uncond 6.10022
[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest —-- Find Dbest conditional NLL on ASIMOV data
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

* ok Kk ok ok k ok ok ok k

* K 43 %**SET PRINT 0

Kk ok ok Kk ok Kk kX
Kk ok ok Kk k kK Kk
* % 44 xxSET NOGRAD
Kk ok kK kK kK x

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 2.02082e+01 1.36268e+00 0.00000e+00 2.00000e+02
* kk ok kk ok ok kk
* 45 xxSET ERR 0.5

* Kk ok k ok k ok ok ok ok

* ok ok ok kk ok ok kk

* * 46 **SET PRINT 0

* Kk ok k ok k ok ok kk

* ok ok ok ok k ok ok kk

* * 47 *xSET STR 1

* Kk ok ok k ok ok ok ok ok

Kk khk kK k Kk k kK

* % 48 **MIGRAD 500 1
* Kk ok ok ok kkkkk

MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=6.13681 FROM MIGRAD STATUS=CONVERGED 12 CALLS 13 TOTAL
EDM=4.49997e-10 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 2.02505e+01 1.36274e+00 4.01574e-05 -9.39091e-04
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 6.13681 for poi fixed at = 0.244898 fit time : Re
[#0] PROGRESS:Eval —-— ASIMOV data gmu_A = 0.250248 condNLL = 6.13681 uncond 6.01169
[#1] INFO:Eval -- Using one-sided gmu - setting gmu to zero muHat = 0.499854 muTest = 0.244898
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[#0] PROGRESS:Eval -— poi = 0.244898 gmu = 0 gmu_A = 0.250248 sigma = 0.489553 CLsplusb = 0.5 CLb =
[#1] INFO:ObjectHandling —-- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(
[#1] INFO:Eval -- AsymptoticCalculator::GetHypoTest: - perform an hypothesis test for POI ( mu ) =
[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest - Find Dbest conditional NLL on OBSERVED dat
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1
LR S i S S
* * 49 xxSET PRINT 0

*k kK Kk kK ok Kk
Kok kK Kok kK ok Kk
* * 50 **SET NOGRAD
*k kK ok k kK ok Kk

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 2.00000e+01 1.41405e+00 0.00000e+00 2.00000e+02
* ok Kk ok ok ok ok ok ok k
* 51 *xSET ERR 0.5

* Kk ok ok ok k ok ok kk

* k ok ok kk ok ok kk

* * 52 **SET PRINT 0

* Kk ok ok ok k ok ok k ok

* Kk k ok kk ok ok kk

* * 53 **SET STR 1

* Kk ok ok ok k ok k ok ok

* Kk ok ok ok k ok ok kk

* % 54 %*x*MIGRAD 500 1
* Kk ok ok k ok ok ok kk

MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=6.13382 FROM MIGRAD STATUS=CONVERGED 12 CALLS 13 TOTAL
EDM=1.5815e-08 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 2.01032e+01 1.36185e+00 4.02134e-05 -5.55281e-03
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 6.13382 for poi fixed at = 0.367347 fit time : Re
[#0] PROGRESS:Eval -- OBSERVED DATA : gmu = 0.0671957 condNLL = 6.13382 uncond 6.10022
[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest —-- Find Dbest conditional NLL on ASIMOV data
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

* ok k ok ok k ok Kk k ok

* K 55 %**SET PRINT 0

* Kk ok kkkkkkk
* hk ok kk ok ok kk
* K 56 **SET NOGRAD
* Kk ok ok ok kkk ok ok

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 2.01032e+01 1.36185e+00 0.00000e+00 2.00000e+02
Kk hk kK k Kk kkk
* % 57 *xSET ERR 0.5
* Kk ok ok ok k ok k ok ok
Kk ok kK k ok ok k Kk
* x 58 **SET PRINT 0
* Kk ok ok ok kkk ok ok
Kk k kK k Kk kkKk
* K 59 xxSET STR 1
* Kk ok ok kkkk kK
Kk k kK k ok kkk
* K 60 **MIGRAD 500 1
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Kok kK Kok ok Kk ok
MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=6.28484 FROM MIGRAD STATUS=CONVERGED 12 CALLS 13 TOTAL
EDM=1.97583e-09 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 2.01645e+01 1.36203e+00 4.06460e-05 -1.96510e-03
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 6.28484 for poi fixed at = 0.367347 fit time : Re
[#0] PROGRESS:Eval —-— ASIMOV data gmu_A = 0.546306 condNLL = 6.28484 uncond 6.01169
[#1] INFO:Eval -- Using one-sided gmu - setting gmu to zero muHat = 0.499854 muTest = 0.367347
[#0] PROGRESS:Eval -- poi = 0.367347 gmu = 0 gmu_A = 0.546306 sigma = 0.497002 CLsplusb = 0.5 CLb =
[#1] INFO:ObjectHandling —-- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(
[#1] INFO:Eval -- AsymptoticCalculator::GetHypoTest: - perform an hypothesis test for POI ( mu ) =
[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest - Find Dbest conditional NLL on OBSERVED dat
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

* ok Kk ok ok k ok ok ok ok

* % 61 »*SET PRINT 0

*ok kK Kk k kK ok Kk
*ok kK Kk kK ok Kk
* * 62 **SET NOGRAD
Kk k ok Kk kK ok Kk

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 2.00000e+01 1.41405e+00 0.00000e+00 2.00000e+02
* ok Kk ok ok k ok ok ok ok
* % 63 **SET ERR 0.5

* Kk ok ok ok kkkkk

* h ok ok ok k ok ok k Kk

* * 64 *+xSET PRINT 0

* Kk ok ok k ok kk ok ok

* h ok ok kk ok ok kk

* % 65 **xSET STR 1

* Kk ok ok kkkkk ok

* h ok ok kk ok ok kk

* % 66 **MIGRAD 500 1
* Kk ok k ok kkkkk

MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=6.10042 FROM MIGRAD STATUS=CONVERGED 12 CALLS 13 TOTAL
EDM=4.22194e-13 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 2.00076e+01 1.36081e+00 4.02279e-05 -2.86515e-05
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 6.10042 for poi fixed at = 0.489796 fit time : Re
[#0] PROGRESS:Eval -- OBSERVED DATA : gmu = 0.000386452 condNLL = 6.10042 uncond 6.10022
[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest —-- Find Dbest conditional NLL on ASIMOV data
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

* k ok ok kk ok ok kk

* % 67 **xSET PRINT 0

Kk kK Kk k kK ok Kk
Kok kK Kk kK ok Kk
* * 68 **SET NOGRAD
Kk kK Kk k kK ok Kk
PARAMETER DEFINITIONS:
NO. NAME VALUE STEP SIZE LIMITS
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1B 2.00076e+01 1.36081e+00 0.00000e+00 2.00000e+02

*k Kk kK Kk kK kK

* K

69 x**xSET ERR 0.5

* ok Kk ok ok ok ok ok ok ok

*k Kk kK Kk kK kK

* K

70 x*x*SET PRINT 0

* ok ok ok ok ok ok ok ok ok

*kkhkkkk kK kK

* x

71 *xSET STR 1

* ok Kk ok ok ok ok k ok ok

Kk Kk Kk kK Kk kK kK

* K

72 x»xMIGRAD 500 1

*ok kK Kk ok Kk k
MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=6.48327 FROM MIGRAD STATUS=CONVERGED 12 CALLS 13 TOTAL
EDM=5.4312e-09 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 2.00865e+01 1.36116e+00 4.12692e-05 -3.25451e-03
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 6.48327 for poi fixed at = 0.489796 fit time : Re
[#0] PROGRESS:Eval -- ASIMOV data gmu_A = 0.943172 condNLL = 6.48327 uncond 6.01169
[#1] INFO:Eval -- Using one-sided gmu - setting gmu to zero muHat = 0.499854 muTest = 0.489796
[#0] PROGRESS:Eval -- poi = 0.489796 gmu = 0 gmu_A = 0.943172 sigma = 0.504336 CLsplusb = 0.5 CLb =
[#1] INFO:ObjectHandling —-- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(
[#1] INFO:Eval —-- AsymptoticCalculator::GetHypoTest: — perform an hypothesis test for POI ( mu ) =
[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest - Find Dbest conditional NLL on OBSERVED dat
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

* ok Kk ok ok ok ok ok ok ok

* x

73 **SET PRINT 0

Kk ok Kk kK k kKK Kk

* ok k ok ok ok ok k ok ok

* *

74 %xxSET NOGRAD

Kk kk kK Kk kKK k

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 2.00000e+01 1.41405e+00 0.00000e+00 2.00000e+02

* ok kok ok k ok Kk k ok

* x

75 *xSET ERR 0.5

Kk ok Kk kK Kk kKA kk

* ok Kk okkk ok Kk k Kk

* x

76 **SET PRINT 0

Kk ok Kk kkkkkkk

* ok k ok kk ok Kk k ok

* x

77 *xSET STR 1

Kk ok Kk ok ok Kk kkkk

* ok kkkk kK kK

* *

78 **MIGRAD 500 1

Hok kK Kok kK k k
MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=6.12298 FROM MIGRAD STATUS=CONVERGED 12 CALLS 13 TOTAL
EDM=5.51482e-09 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.99201e+01 1.35961e+00 4.03956e-05 -3.27110e-03

ERR DEF= 0.5
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AsymptoticCalculator::EvaluateNLL - value = 6.12298 for poi fixed at = 0.612245 fit time : Re
[#0] PROGRESS:Eval —-— OBSERVED DATA : gmu = 0.0455047 condNLL = 6.12298 uncond 6.10022

[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest —-- Find Dbest conditional NLL on ASIMOV data
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

* k ok ok kkkkkk

* * 79 xxSET PRINT 0

* ok Kk ok ok ok ok ok ok ok

*kkhkkkk kK kK

* x

80 x*SET NOGRAD

* ok Kk ok ok ok ok ok ok ok

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 1.99201e+01 1.35961e+00 0.00000e+00 2.00000e+02
Kk Kk Kk kK Kk kK kK
81 xxSET ERR 0.5

* K

* ok Kk ok ok ok ok koK x

Kk Kk Kk kK Kk kK kK

* K

82 *xxSET PRINT 0

* ok Kk ok ok ok ok ok ok ok

Ak Kk kK Kk kK kK

* K

83 *xSET STR 1

* ok Kk ok ok ok ok k ok ox

*kkkhkhkk Kk kK kK

* K

84 **MIGRAD 500 1

*ok kK Kk ok Kk ok
MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=6.72789 FROM MIGRAD STATUS=CONVERGED 12 CALLS 13 TOTAL
EDM=1.15723e-08 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 2.00155e+01 1.36018e+00 4.20107e-05 -4.74654e-03
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 6.72789 for poi fixed at = 0.612245 fit time : Re
[#0] PROGRESS:Eval —-— ASIMOV data gmu_A = 1.4324 condNLL = 6.72789 uncond 6.01169
[#0] PROGRESS:Eval -- poi = 0.612245 gmu = 0.0455047 gmu_A = 1.4324 sigma = 0.511556 CLsplusb = 0.4:
[#1] INFO:ObjectHandling —-- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(
[#1] INFO:Eval -- AsymptoticCalculator::GetHypoTest: — perform an hypothesis test for POI ( mu ) =
[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest - Find Dbest conditional NLL on OBSERVED dat
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1
*kkkkkkkkkk

* % 85 *x*SET PRINT 0

Ak Kk hkkk kKKK

Kk ok Kk kkkkkkk

* x

86 xxSET NOGRAD

Ak KhkKhkKkkKk kKK

PARAMETER DEFINITIONS:

* x

* x

NO. NAME VALUE STEP SIZE LIMITS
1B 2.00000e+01 1.41405e+00 0.00000e+00 2.00000e+02

* Kk ok ok ok k ok k ok ok

87 x*SET ERR 0.5
* Kk ok ok Kk k ok ok ok ok
* Kk ok ok kkkk ok ok

88 *x*SET PRINT 0
* Kk ok ok Kk k ok kkk
Kk k ok kkkk kK

89 %x*SET STR 1

* x

*kkkkKkKk kKKK
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* ok ok ok ok ok ok ok ok ok

* % 90 *»*MIGRAD 500 1

* Kk ok ok ok kkkkk

MIGRAD MINIMIZATION HAS CONVERGED.

MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=6.19708 FROM MIGRAD STATUS=CONVERGED 12 CALLS 13 TOTAL
EDM=8.82733e-08 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.98400e+01 1.35830e+00 4.07064e-05 -1.30762e-02
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 6.19708 for poi fixed at = 0.734694 fit time : Re
[#0] PROGRESS:Eval —-— OBSERVED DATA : gmu = 0.193704 condNLL = 6.19708 uncond 6.10022
[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest —-- Find Dbest conditional NLL on ASIMOV data
AsymptoticCalculator: :EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

kk Kk kK KK KKK

* % 91 %x%xSET PRINT 0

Kok k ok Kk kK ok Kk
*ok kK Kk kK ok Kk
* * 92 *x*SET NOGRAD
Kok kK Kk kK ok Kk

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 1.98400e+01 1.35830e+00 0.00000e+00 2.00000e+02
* ok Kk ok ok k ok ok kk
* % 93 **SET ERR 0.5

* Kk ok ok ok k ok ok kk

* Kk ok ok kk ok ok k Kk

* * 94 *+xSET PRINT 0

* Kk ok ok Kk kkkkk

* k ok ok Kk k ok ok k Kk

* % 95 *xSET STR 1

* Kk ok ok ok kkkkk

* h ok ok kk ok ok k Kk

* % 96 **MIGRAD 500 1
* Kk ok ok Kk kkkkk

MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=7.01493 FROM MIGRAD STATUS=CONVERGED 12 CALLS 13 TOTAL
EDM=2.10085e-08 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.99505e+01 1.35913e+00 4.28549e-05 -6.39107e-03
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 7.01493 for poi fixed at = 0.734694 fit time : Re
[#0] PROGRESS:Eval —-— ASIMOV data gmu_A = 2.00649 condNLL = 7.01493 uncond 6.01169
[#0] PROGRESS:Eval -- poi = 0.734694 gmu = 0.193704 gmu_A = 2.00649 sigma = 0.518667 CLsplusb = 0.3
[#1] INFO:0ObjectHandling —-- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(
[#1] INFO:Eval —-- AsymptoticCalculator::GetHypoTest: - perform an hypothesis test for POI ( mu ) =
[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest - Find Dbest conditional NLL on OBSERVED daf
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1
*hkkhkkkkkk kK

* % 97 *%xSET PRINT 0

Kok kK Kk kK ok Kk
Kk kK Kk kK ok Kk
* * 98 **SET NOGRAD
Kok kK Kk kK ok Kk

PARAMETER DEFINITIONS:
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NO. NAME VALUE STEP SIZE LIMITS
1B 2.00000e+01 1.41405e+00 0.00000e+00 2.00000e+02
* Kk ok ok kkkkkk
* % 99 %x%SET ERR 0.5

Kok kK Kk kK ok Kk
Kk kK Kk kK ok Kk

*% 100 **SET PRINT 0

Kk kK Kk kK kK

Kok kK Kk kK ok Kk

*% 101 *%*SET STR 1

Kk kK Kk kK ok Kk

Kk k ok Kk kK ok Kk

%% 102 **MIGRAD 500 1

Kok kK Kk kK kK

MIGRAD MINIMIZATION HAS CONVERGED.

MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=6.31876 FROM MIGRAD STATUS=CONVERGED 12 CALLS 13 TOTAL
EDM=3.99827e-07 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.97663e+01 1.35693e+00 4.11490e-05 -2.78114e-02
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 6.31876 for poi fixed at = 0.857143 fit time : Re
[#0] PROGRESS:Eval —-— OBSERVED DATA : gmu = 0.437067 condNLL = 6.31876 uncond 6.10022

[#0] PROGRESS:Eval —-- AsymptoticCalculator::GetHypoTest —-- Find best conditional NLL on ASIMOV data
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

*kkkkkkkkk*k

*x 103 **SET PRINT 0

Kk K kK kK k ok Kk
Kk Kk Kk Kk Kk
*% 104 x+xSET NOGRAD
Kk K kK kK k ok Kk

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 1.97663e+01 1.35693e+00 0.00000e+00 2.00000e+02
* Kk ok ok Kk kkokkk
% 105 *xSET ERR 0.5

Kk Kk Kk kK ok Kk
Kok kK ok ok kK ok ok

% 106 **SET PRINT 0

Kk kK Kk kK ok Kk

*ok kK Kk kK ok Kk

% 107 xxSET STR 1

Kk kK ok k kK ok Kk

*k kK ok k kK ok Kk

%% 108 **MIGRAD 500 1

Kk Kk Kk kK ok Kk

MIGRAD MINIMIZATION HAS CONVERGED.

MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=7.34107 FROM MIGRAD STATUS=CONVERGED 12 CALLS 13 TOTAL
EDM=3.41947e-08 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.98910e+01 1.35802e+00 4.37875e-05 -8.14950e-03
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 7.34107 for poi fixed at = 0.857143 fit time : Re
[#0] PROGRESS:Eval -- ASIMOV data gmu_A = 2.65876 condNLL = 7.34107 uncond 6.01169

[#0] PROGRESS:Eval -- poi = 0.857143 gmu = 0.437067 gmu_A = 2.65876 sigma = 0.52567 CLsplusb = 0.25
[#1] INFO:ObjectHandling —-- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(
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[#1] INFO:Eval —-- AsymptoticCalculator::GetHypoTest: - perform an hypothesis test for POI ( mu ) =
[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest - Find Dbest conditional NLL on OBSERVED datf
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

* k ok ok kkkkkk

% 109 xxSET PRINT 0

Kk ok ok Kk Kk Kk kK x
Kk Kk kR ok ok ok x
% 110 x»*SET NOGRAD
Kk ok ok Kk Kk Kk kK x

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 2.00000e+01 1.41405e+00 0.00000e+00 2.00000e+02
Kk hkhkkkkk kK
% 111 *xSET ERR 0.5

Kk ok ok kk kK ok
Kk ok kkkkk kK

* % 112 **SET PRINT 0

Kk ok ok ok ok ok ok ok

Kk ok kkk Kk k kK

*x 113 x*SET STR 1

Kk ok ok kk kK ok

Kk hkhkkk Kk ok kK

% 114 xx*MIGRAD 500 1

Kk ko kk kK ok

MIGRAD MINIMIZATION HAS CONVERGED.

MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=6.48447 FROM MIGRAD STATUS=CONVERGED 12 CALLS 13 TOTAL
EDM=1.10659e-06 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.96983e+01 1.35551e+00 4.17112e-05 -4.62454e-02
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 6.48447 for poi fixed at = 0.979592 fit time : Re
[#0] PROGRESS:Eval -- OBSERVED DATA : gmu = 0.768489 condNLL = 6.48447 uncond 6.10022
[#0] PROGRESS:Eval —-—- AsymptoticCalculator::GetHypoTest ——- Find best conditional NLL on ASIMOV data
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

Kk kK kK kK k

*% 115 xxSET PRINT 0
Kk ok kK kK ok ok x

Kk kK Kk Kk Kk

*% 116 x»*xSET NOGRAD

Kok kK Kk kK ok Kk

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 1.96983e+01 1.35551e+00 0.00000e+00 2.00000e+02
* Kk ok kkk Kk kkk
% 117 xxSET ERR 0.5

Kk ok kK k Kk k Kk Kk

* Kk ok kkkkkkk

* % 118 *xSET PRINT 0

Kk ok hkkk Kk kk Kk

* Kk ok ok Kk kkkkk

*x 119 **SET STR 1

Kk kkkk Kk kk Kk

* Kk ok kkk ok ok ok ok

* % 120 *+*MIGRAD 500 1
Kk khkkk Kk kk Kk

MIGRAD MINIMIZATION HAS CONVERGED.
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MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=7.70332 FROM MIGRAD STATUS=CONVERGED 12 CALLS 13 TOTAL
EDM=5.14143e-08 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.98362e+01 1.35689e+00 4.47956e-05 -9.98901e-03
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 7.70332 for poi fixed at = 0.979592 fit time : Re
[#0] PROGRESS:Eval —-— ASIMOV data gmu_A = 3.38326 condNLL = 7.70332 uncond 6.01169
[#0] PROGRESS:Eval —-- poi = 0.979592 gmu = 0.768489 gmu_A = 3.38326 sigma = 0.532571 CLsplusb = 0.1
[#1] INFO:ObjectHandling —-- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(
[#1] INFO:Eval -- AsymptoticCalculator::GetHypoTest: - perform an hypothesis test for POI ( mu ) =
[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest - Find Dbest conditional NLL on OBSERVED dat
AsymptoticCalculator: :EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

* x %
* x
* kK
* % *
* x
* kK

PAR

* ok ok
* %

* Kk *
* ok Kk
* %

* Kk
* ok ok
* %

* ok k
* ok ok
* %

* ok k
MIG
MIG
FCN

EX

NO.

1

Asym
[#0]
[#0]

Asym

* k *
* *
* kK
* k *
* x
* kK

PAR

* Kk *

* *

Kk Kk Kk kK x

121 xxSET PRINT 0
Kk ok Kk kK x

Kk Kk Kk kK x

122 xxSET NOGRAD

Kk ok Kk kK x

AMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS

1B 2.00000e+01 1.41405e+00 0.00000e+00 2.00000e+02
* Kk kK ok ok

123 *xSET ERR 0.5

* Kk Kk ok Kk kK
* Kk kK ok ok
124 *+xSET PRINT 0
* Kk Kk ok Kk kK
* Kk kK ok ok
125 *xSET STR 1
* Kk Kk ok Kk kK
* Kk kK ok ok
126 *+*MIGRAD 500 1
* Kk Kk ok Kk kK
RAD MINIMIZATION HAS CONVERGED.
RAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

=6.69102 FROM MIGRAD STATUS=CONVERGED 12 CALLS 13 TOTAL
EDM=2.35508e-06 STRATEGY= 1 ERROR MATRIX ACCURATE
T PARAMETER STEP FIRST
NAME VALUE ERROR SIZE DERIVATIVE
B 1.96355e+01 1.35407e+00 4.23810e-05 -6.74407e-02
ERR DEF= 0.5

ptoticCalculator::EvaluateNLL - value = 6.69102 for poi fixed at = 1.10204 fit time : Real time
PROGRESS:Eval —-— OBSERVED DATA : gmu = 1.18159 condNLL = 6.69102 uncond 6.10022
PROGRESS:Eval —-- AsymptoticCalculator::GetHypoTest —-—- Find best conditional NLL on ASIMOV data
ptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1
* Kk k kK kK

127 x»*SET PRINT 0

Kk Kk Kk kK x
Kk ok Kk k k k
128 x*SET NOGRAD

Kk ok ok ok ok Kk ok

AMETER DEFINITIONS:
NO. NAME VALUE STEP SIZE LIMITS

1B 1.96355e+01 1.35407e+00 0.00000e+00 2.00000e+02
* Kk ok kK kK

129 xxSET ERR 0.5

4.1.

Frequentist 81



RooStatsWorkbook Documentation

Kk ok ko ok ok ok ok ok
Kok ok kkkkkk

* % 130 *+*SET PRINT 0

Kk ok ko ok ok ok Kk

Kk ok kkkkkk

*x 131 xxSET STR 1

Kk ok ko k ok ok ok ok

Kok ok k ok ok ok ok ok

*x 132 *x*xMIGRAD 500 1

Kk ok ok ok ok ok ok k

MIGRAD MINIMIZATION HAS CONVERGED.

MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=8.09902 FROM MIGRAD STATUS=CONVERGED 12 CALLS 13 TOTAL
EDM=7.28377e-08 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.97857e+01 1.35575e+00 4.58673e-05 -1.18859e-02
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 8.09902 for poi fixed at = 1.10204 fit time : Real time
[#0] PROGRESS:Eval -- ASIMOV data gmu_A = 4.17466 condNLL = 8.09902 uncond 6.01169
[#0] PROGRESS:Eval -- poi = 1.10204 gmu = 1.18159 gmu_A = 4.17466 sigma = 0.53937 CLsplusb = 0.1385
[#1] INFO:ObjectHandling —- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(
[#1] INFO:Eval -- AsymptoticCalculator::GetHypoTest: - perform an hypothesis test for POI ( mu ) =
[#0] PROGRESS:Eval —-- AsymptoticCalculator::GetHypoTest - Find Dbest conditional NLL on OBSERVED datf
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

*kkhkkkkkkhkkkk

*+% 133 xxSET PRINT 0

Kk K kK kK kK Kk
Kk Kk kK kK kK
*x 134 x+xSET NOGRAD
Kk K kK kK k kK

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 2.00000e+01 1.41405e+00 0.00000e+00 2.00000e+02
* Kk ok ok Kk kkk ok ok
% 135 *xSET ERR 0.5
Kk kkkkkk kK
* Kk ok ok ok k ok kkk
* % 136 **xSET PRINT 0
* Kk kkkkkk kK
* Kk ok k ok kkk ok ok
* * 137 **xSET STR 1
* Kk kkkkkk kK
* Kk ok kkk ok ok kk
* % 138 *+*MIGRAD 500 1

Hok kK kKK ok ok
MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=6.93552 FROM MIGRAD STATUS=CONVERGED 12 CALLS 13 TOTAL
EDM=4.25926e-06 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.95773e+01 1.35262e+00 4.31466e-05 -9.06724e-02
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 6.93552 for poi fixed at = 1.22449 fit time : Real time
[#0] PROGRESS:Eval -- OBSERVED DATA : gmu = 1.6706 condNLL = 6.93552 uncond 6.10022
[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest —-- Find Dbest conditional NLL on ASIMOV data
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1
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* ok ok ok ok ok ok ok ok ok

%% 139 *xSET PRINT 0
* Kk ok ok ok kkkkk

* ok ok ok ok ok ok ok ok x

%% 140 *xSET NOGRAD

* Kk ok ok ok k ok ok ok ok

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 1.95773e+01 1.35262e+00 0.00000e+00 2.00000e+02
*ok kK Kok kK ok k
*%x 141 %*SET ERR 0.5

* Kk ok ok ok k ok ok ok ok

* ok ok ok kk ok ok kk

* * 142 *+xSET PRINT 0

* Kk ok ok ok k ok ok ok ok

* Kk ok ok kk ok ok kk

*x 143 **SET STR 1

* Kk ok ok ok k ok ok ok ok

* hk ok kk ok ok kk

* % 144 *+*MIGRAD 500 1
* Kk ok ok ok k ok ok ok k

MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=8.52577 FROM MIGRAD STATUS=CONVERGED 12 CALLS 13 TOTAL
EDM=9.84689%9e-08 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.97389e+01 1.35460e+00 4.69925e-05 -1.38170e-02
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 8.52577 for poi fixed at = 1.22449 fit time : Real time
[#0] PROGRESS:Eval —-— ASIMOV data gmu_A = 5.02816 condNLL = 8.52577 uncond 6.01169
[#0] PROGRESS:Eval -- poi = 1.22449 gmu = 1.6706 gmu_A = 5.02816 sigma = 0.546073 CLsplusb = 0.0980
[#1] INFO:0ObjectHandling —-- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(
[#1] INFO:Eval —-- AsymptoticCalculator::GetHypoTest: - perform an hypothesis test for POI ( mu ) =
[#0] PROGRESS:Eval -—- AsymptoticCalculator::GetHypoTest - Find Dbest conditional NLL on OBSERVED daf
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

* ok khkkkkkk kK

*% 145 xxSET PRINT 0

Kk ok ok Kk kK ok ok x
Kk kK Kk Kk kK ok
*% 146 xxSET NOGRAD
Kok kK Kk kK ok Kk

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 2.00000e+01 1.41405e+00 0.00000e+00 2.00000e+02
* Kk ok kkk ok ok ok ok
% 147 xxSET ERR 0.5
Kk ok hkkk Kk kk Kk
* Kk ok kkkkkkk
* % 148 *xSET PRINT 0
Kk ok kK k Kk k kK
* Kk ok ok Kk k Kk kkk
*%x 149 **SET STR 1
Kk ok hkkk Kk kk Kk
* Kk ok kkk ok ok kK
* % 150 *+*MIGRAD 500 1

* ok ok kK k kK kK

MIGRAD MINIMIZATION HAS CONVERGED.
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MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=7.21539 FROM MIGRAD STATUS=CONVERGED 12 CALLS 13 TOTAL
EDM=6.89867e-06 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.95232e+01 1.35118e+00 4.39967e-05 -1.15376e-01
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 7.21539 for poi fixed at = 1.34694 fit time : Real time
[#0] PROGRESS:Eval —-— OBSERVED DATA : gmu = 2.23033 condNLL = 7.21539 uncond 6.10022
[#0] PROGRESS:Eval —-- AsymptoticCalculator::GetHypoTest —-—- Find Dbest conditional NLL on ASIMOV data
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1
*kkhkkhkkkkkkKk*k

% 151 *xSET PRINT 0

Kk kK Kk kK ok Kk
Kok k kK k kK ok Kk
*% 152 %%xSET NOGRAD
Kk kK Kk kK ok Kk

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 1.95232e+01 1.35118e+00 0.00000e+00 2.00000e+02
Kk k Kk kK Kk Kk kKK
% 153 xxSET ERR 0.5

* ok ok ok kkkkkk

*khkkkkkkkkk

* % 154 *+*SET PRINT 0

*kkhkkkkkkkk

*kkhkkkkkkhkkkk

* % 155 *xSET STR 1

* ok kkkkkk kK

*kkkhkkkkkkkk

* % 156 *+*MIGRAD 500 1

*kkhk ok kkkk kK

MIGRAD MINIMIZATION HAS CONVERGED.

MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=8.98141 FROM MIGRAD STATUS=CONVERGED 12 CALLS 13 TOTAL

EDM=1.28247e-07 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.96956e+01 1.35347e+00 4.81622e-05 -1.57661e-02
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 8.98141 for poi fixed at = 1.34694 fit time : Real time
[#0] PROGRESS:Eval —-— ASIMOV data gmu_A = 5.93944 condNLL = 8.98141 uncond 6.01169

[#0] PROGRESS:Eval -- poi = 1.34694 gmu = 2.23033 gmu_A = 5.93944 sigma = 0.552682 CLsplusb = 0.067
[#1] INFO:ObjectHandling —-- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(

[#1] INFO:Eval —-- AsymptoticCalculator::GetHypoTest: - perform an hypothesis test for POI ( mu ) =
[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest - Find Dbest conditional NLL on OBSERVED dat
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

* k ok ok ok k ok ok kk

*% 157 xxSET PRINT 0

*kkkkkkkkk*k

* k ok ok ok k ok ok kk

*% 158 x»*SET NOGRAD

*kkkkkkkkk*k

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 2.00000e+01 1.41405e+00 0.00000e+00 2.00000e+02
Kk k kK k Kk k kK
% 159 *xSET ERR 0.5
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LR I S S i S S

* ok ok ok ok kkkkk

*% 160 *xSET PRINT 0

kkhk kKR K K kKKK

* ok ok ok kkkkkk

*x 161 x*SET STR 1

LR S S i S

* ok ok ok kkkkkk

*x 162 *+*xMIGRAD 500 1

LR I S S S i

MIGRAD MINIMIZATION HAS CONVERGED.

MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=7.52826 FROM MIGRAD STATUS=CONVERGED 12 CALLS 13 TOTAL

EDM=1.03209e-05 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.94729%e+01 1.34976e+00 4.49208e-05 -1.41108e-01
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 7.52826 for poi fixed at = 1.46939 fit time : Real time
[#0] PROGRESS:Eval -- OBSERVED DATA : gmu = 2.85607 condNLL = 7.52826 uncond 6.10022
[#0] PROGRESS:Eval —-- AsymptoticCalculator::GetHypoTest —-—- Find Dbest conditional NLL on ASIMOV data
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1
* ok ok ok kkkkkk

*% 163 xxSET PRINT 0

Kk k Kk Kk kKK KKK

*kkhkkkkkkkk

*% 164 x»xSET NOGRAD

* ok Kk ok ok k ok ok kk

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 1.94729e+01 1.34976e+00 0.00000e+00 2.00000e+02
Kk khkkkkk kK
% 165 *xSET ERR 0.5

* ok Kk ok ok k ok ok kk

*kkhkkkkkk kK

% 166 **SET PRINT 0

* ok ko Kk k ok ok ok ok

*hkkhkkkkkkkk

% 167 *xSET STR 1

* k ok ok ok k ok ok kk

*kkhkkkkkkkk

**x 168 x*MIGRAD 500 1

* k ok ok ok k ok ok kk

MIGRAD MINIMIZATION HAS CONVERGED.

MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=9.46399 FROM MIGRAD STATUS=CONVERGED 12 CALLS 13 TOTAL

EDM=1.62034e-07 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.96553e+01 1.35235e+00 4.93684e-05 -1.77202e-02
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 9.46399 for poi fixed at = 1.46939 fit time : Real time
[#0] PROGRESS:Eval —-— ASIMOV data gmu_A = 6.90461 condNLL = 9.46399 uncond 6.01169
[#0] PROGRESS:Eval -—- poi = 1.46939 gmu = 2.85607 gqmu_A = 6.90461 sigma = 0.5592 CLsplusb = 0.04551:
[#1] INFO:ObjectHandling —-- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(

[#1] INFO:Eval -- AsymptoticCalculator::GetHypoTest: — perform an hypothesis test for POI ( mu ) =
[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest - Find Dbest conditional NLL on OBSERVED dat
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1
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Kk ok ok Kk Kk Kk kK x
169 xxSET PRINT 0

Ak Kk kKkKk Kk kKK

* x

Kk ok ok Kk Kk Kk kK x

170 x**SET NOGRAD

Kk ok kK kK kK x

PARAMETER DEFINITIONS:
NO. NAME

1B
Kk ok ok Kk Kk Kk kK x
171 xxSET ERR 0.5

kk Kk kKK k kKK

* x

VALUE

2.00000e+01 1.41

* *

* ok Kk ok ok ok ok ok ok ok

172 xxSET PRINT 0

kk Kk kK Kk kKKK

* *

Kk ok ok Kk Kk Kk kK ok
173 *xSET STR 1

kkKkkKkKk kKK Kk

* x

*ok kK Kok ok Kk ok
174 x»xMIGRAD
Kok kK ok ok Kk ok
MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND E

500

* *

STEP SIZE

LIMITS

405e+00 0.00000e+00 2.00000e+02

RROR MATRIX.

FCN=7.87199 FROM MIGRAD STATUS=CONVERGED 12 CALLS 13 TOTAL
EDM=1.45479e-05 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.94260e+01 1.34836e+00 4.59093e-05 -1.67523e-01
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 7.87199 for poi fixed at = 1.59184 fit time Real time
[#0] PROGRESS:Eval -- OBSERVED DATA gmu = 3.54353 condNLL = 7.87199 uncond 6.10022
[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest —-- Find Dbest conditional NLL on ASIMOV data

AsymptoticCalculator::EvaluateNLL
Kk k Kk Kk kKK KKK
175 **SET PRINT 0

Kk kKk kK Kk kKK Kk

* *

* ok Kk ok ok ok ok ok ok ok

176 xxSET NOGRAD

Kk ok Kk kK Kk kKK Kk

PARAMETER DEFINITIONS:

* x

NO. NAME VALUE STE
1B 1.94260e+01 1.34
* h ok ok kk ok ok kk
% 177 *xSET ERR 0.5

Kk ok ok Kk kK kK x
Kok ok ko k ok ok ok x
178 x*SET PRINT 0

Kk ok Kk ok ok Kk kkkk

* *

* Kk k kK k ok ok k ok

179 *xSET STR 1

Kk ok ok kk Kk kkkk

* x

Kk ok kK k Kk kkk

180 x+*MIGRAD

* Kk ok ok ok kkokkk

MIGRAD MINIMIZATION HAS CONVERGED.

MIGRAD WILL VERIFY CONVERGENCE AND E

FCN=9.97175 FROM MIGRAD STATUS=CO
EDM=1.99642e-07

500

* *

EXT PARAMETER

using Minuit / Migrad with strategy

P SIZE
836e+00

LIMITS

0.00000e+00 2.00000e+02

RROR MATRIX.
NVERGED 12 CALLS
STRATEGY= 1

STEP FIRST

13 TOTAL
ERROR MATRIX ACCURATE

1 and tolerance 1
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NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.96177e+01 1.35125e+00 5.06045e-05 -1.96686e-02
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 9.97175 for poi fixed at = 1.59184 fit time : Real time
[#0] PROGRESS:Eval —-— ASIMOV data gmu_A = 7.92013 condNLL = 9.97175 uncond 6.01169

[#0] PROGRESS:Eval -- poi = 1.59184 gmu = 3.54353 gqmu_A = 7.92013 sigma = 0.56563 CLsplusb = 0.0298!
[#1] INFO:ObjectHandling —-- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model
[#1] INFO:Eval -- AsymptoticCalculator::GetHypoTest: - perform an hypothesis test for POI ( mu ) =
[#0] PROGRESS:Eval —-- AsymptoticCalculator::GetHypoTest - Find Dbest conditional NLL on OBSERVED datf
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

*kKkkKkk kKKK

* *

181 xxSET PRINT 0

Kk Kk Kk kK Kk kK kK

kk Kk Kk KkKk kKKK

* *

182 xxSET NOGRAD

Kk Kk kK Kk kK kK

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 2.00000e+01 1.41405e+00 0.00000e+00 2.00000e+02

Kk k Kk kK Kk Kk kKK

* *

183 x»xSET ERR 0.5

*kkkhk kK Kk kK kK

Kk kK Kk kK Kk Kk kKK

* *

184 xxSET PRINT 0

Kk Kk kK Kk kKKK

Kk Kk Kk kK Kk kKKK

* *

185 xxSET STR 1

Kk Kk kK Kk kKKK

Kk k Kk kK Kk Kk kKK

* *

186 x»x*MIGRAD 500 1

Hok kK ok k kK ok ok
MIGRAD MINIMIZATION HAS CONVERGED.

MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=8.24464 FROM MIGRAD STATUS=CONVERGED 12 CALLS 13 TOTAL

EDM=1.95791e-05 STRATEGY= 1 ERROR MATRIX ACCURATE

EXT PARAMETER STEP FIRST

NO.
1

NAME VALUE ERROR SIZE DERIVATIVE
B 1.93821e+01 1.34699e+00 4.69532e-05 -1.94345e-01
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 8.24464 for poi fixed at = 1.71429 fit time : Real time

[#0]
[#0]

PROGRESS:Eval —— OBSERVED DATA : gmu = 4.28884 condNLL = 8.24464 uncond 6.10022
PROGRESS:Eval —-- AsymptoticCalculator::GetHypoTest —-- Find Dbest conditional NLL on ASIMOV data

AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

Kk ok Kk kk Kk kK kk

* x

187 xxSET PRINT 0

Kk Kk kKkKk Kk kKK

Kk ok Kk kkkkkkk

* x

188 xxSET NOGRAD

Kk kkKkKk kKKK

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 1.93821e+01 1.34699e+00 0.00000e+00 2.00000e+02

Kk ok Kk kk Kk kkkk

* x

189 *xSET ERR 0.5

Kk Kk kKkKk Kk kKK

Kk ok Kk ok ok ok okkkk

* x

190 x**SET PRINT 0

Kk Kk kKkKk kKKK
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LR I S S i S S

*%x 191 %%xSET STR 1

*kkhkkhkkkkkkkk

L I S S S S S

*x 192 *x*MIGRAD 500 1

*khkkhkkkkkkkk

MIGRAD MINIMIZATION HAS CONVERGED.

MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=10.5031 FROM MIGRAD STATUS=CONVERGED 12 CALLS 13 TOTAL

EDM=2.40835e-07 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.95826e+01 1.35018e+00 5.18647e-05 -2.16026e-02
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 10.5031 for poi fixed at = 1.71429 fit time : Real time
[#0] PROGRESS:Eval —-— ASIMOV data gmu_A = 8.98281 condNLL = 10.5031 uncond 6.01169
[#0] PROGRESS:Eval -- poi = 1.71429 gmu = 4.28884 gmu_A = 8.98281 sigma = 0.571975 CLsplusb = 0.0109:
[#1] INFO:0ObjectHandling —-- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(

[#1] INFO:Eval —-- AsymptoticCalculator::GetHypoTest: - perform an hypothesis test for POI ( mu ) =
[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest - Find Dbest conditional NLL on OBSERVED daf
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

* ok ok ok kkkk kK

*% 193 xxSET PRINT 0

* ok ok ok ok k ok ok ok ok

* k ok ok kkkk kK

*% 194 xxSET NOGRAD

* ok ok ok ok k ok ok ok ok

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 2.00000e+01 1.41405e+00 0.00000e+00 2.00000e+02
Kk khkkkkk kK
% 195 xxSET ERR 0.5

* ok Kk ok ok k ok ok ok ok

*kkhkkkkkk kK

*% 196 xxSET PRINT 0

* ok Kk ok ok kk ok k ok

*hkkhkkkkkk kK

*% 197 xxSET STR 1

* ok Kk ok ok k ok Kk k ok

*hkkhkkkkkk kK

*x 198 *+*MIGRAD 500 1

* ok Kk ok ok k ok Kk k ok

MIGRAD MINIMIZATION HAS CONVERGED.

MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=8.64445 FROM MIGRAD STATUS=CONVERGED 12 CALLS 13 TOTAL

EDM=2.53975e-05 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.93409e+01 1.34565e+00 4.80448e-05 -2.21357e-01
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 8.64445 for poi fixed at = 1.83673 fit time : Real time
[#0] PROGRESS:Eval -- OBSERVED DATA : gmu = 5.08844 condNLL = 8.64445 uncond 6.10022
[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest —-—- Find best conditional NLL on ASIMOV data
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

*hkkhkkkkkkkk

*% 199 %%xSET PRINT 0

* k ok ok kkkkkk

Ak Kk Kk KkKk kKKK
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200 **SET NOGRAD

*k Kk kK Kk kK kK

PARAMETER DEFINITIONS:

* *

NO. NAME VALUE STEP SIZE LIMITS
1B 1.93409e+01 1.34565e+00 0.00000e+00
Kk ok kK kK kK x
*%x 201 *%*SET ERR 0.5
Kk ko kK ok ok ok x
Kk ok kK kK kK x
*% 202 *%SET PRINT 0
Kk Kk kK kK ok
Kk ok kK kK kK x
*%x 203 *%xSET STR 1
Kk kK kK kK x
Kk ok kK kK kK x
*% 204 **MIGRAD 500 1

*ok kK Kk kK ok ok
MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=11.0565 FROM MIGRAD STATUS=CONVERGED 12 CALL
EDM=2.85353e-07 STRATEGY= 1
EXT PARAMETER STEP
NO. NAME VALUE ERROR SIZE
1 B 1.95498e+01 1.34913e+00 5.31438e-0
ERR DEF= 0.5
AsymptoticCalculator::EvaluateNLL - value =

[#0] PROGRESS:Eval —- ASIMOV data gmu_A = 10.0897 condN
[#0] PROGRESS:Eval -- poi = 1.83673 gmu = 5.08844 gmu_A =
[#1] INFO:ObjectHandling —-- RooWorkspace::saveSnaphot (w)

[#1] INFO:Eval —-- AsymptoticCalculator::GetHypoTest: - pe
[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest -

AsymptoticCalculator::EvaluateNLL using Minuit / Mig
* ok Kk ok ok k kK kk

205 %*%*SET PRINT

Kk ok Kk kK Kk kKK Kk

* x

Xk K Kk Kk ok Kk ok kK
206 **SET NOGRAD

Kk hk Kk kK Kk kKK Kk

PARAMETER DEFINITIONS:

* x

11.0565 for poi fixed at

2.00000e+02

S 13 TOTAL
ERROR MATRIX ACCURATE
FIRST
DERIVATIVE
5 -2.35153e-02

1.83673 fit time Real time
LL 11.0565 uncond 6.01169
10.0897 sigma 0.578239 CLsplusb 0.012

replacing previous snapshot with name Model(

rform an hypothesis test for POI ( mu )
Find Dbest conditional NLL on OBSERVED dat
rad with strategy 1 and tolerance 1

NO. NAME VALUE STEP SIZE LIMITS
1B 2.00000e+01 1.41405e+00 0.00000e+00 2.00000e+02
Kok kK Kk kK kK
% 207 *xSET ERR 0.5
Kk ok kkok ok ok ok ok
Kk ok kkkkkk
*% 208 xxSET PRINT 0
Kk ok ok kok ok ok ok ok
A
% 209 *xSET STR 1
Kk ok ok kok ok ok ok ok
A
*x 210 **MIGRAD 500 1
Kk ko k ok ok ok ok ok
MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.
FCN=9.06977 FROM MIGRAD STATUS=CONVERGED 12 CALLS 13 TOTAL
EDM=3.19735e-05 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
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NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.93023e+01 1.34435e+00 4.91769e-05 -2.48386e-01
ERR DEF= 0.5
AsymptoticCalculator::EvaluateNLL - wvalue = 9.06977 for poi fixed at = 1.95918 fit time : Real time
[#0] PROGRESS:Eval -- OBSERVED DATA : gmu = 5.93909 condNLL = 9.06977 uncond 6.10022
[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest —-—- Find Dbest conditional NLL on ASIMOV data
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

*kkhkkkk kK kK

* K

211 **SET PRINT 0

* ok Kk ok ok ok ok k ok ox

Kk Kk Kk kK Kk kK kK

* K

212 **SET NOGRAD

* ok Kk ok ok ok ok ok ok ok

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS

1B 1.93023e+01 1.34435e+00 0.00000e+00 2.00000e+02

Kk Kk kK Kk kK kK

* K

213 %*SET ERR 0.5

* ok Kk ok ok ok ok ok ok ok

Kk Kk kK Kk kK kK

* K

214 xxSET PRINT 0

* ok Kk ok ok ok ok ok ok ok

Kk Kk kK Kk kK kK

* K

215 xxSET STR 1

* ok Kk ok ok ok ok ok ok ok

Ak khkkk Kk kK kK

* K

216 **MIGRAD 500 1

*ok ok ok Kk ok Kk ok

MIGRAD MINIMIZATION HAS CONVERGED.

MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=11.6308 FROM MIGRAD STATUS=CONVERGED 12 CALLS 13 TOTAL

EDM=3.32916e-07 STRATEGY= 1 ERROR MATRIX ACCURATE

EXT PARAMETER STEP FIRST

NO.
1

NAME VALUE ERROR SIZE DERIVATIVE
B 1.95190e+01 1.34811e+00 5.44377e-05 -2.54010e-02
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 11.6308 for poi fixed at = 1.95918 fit time : Real time

[#0]
[#0]
[#1]

[#1]
[#0]

PROGRESS:Eval —-— ASIMOV data gmu_A = 11.2382 condNLL = 11.6308 uncond 6.01169
PROGRESS:Eval -- poi = 1.95918 gmu = 5.93909 gmu_A = 11.2382 sigma = 0.584423 CLsplusb = 0.007
INFO:0bjectHandling —-—- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(

INFO:Eval -- AsymptoticCalculator::GetHypoTest: - perform an hypothesis test for POI ( mu ) =
PROGRESS:Eval —- AsymptoticCalculator::GetHypoTest - Find Dbest conditional NLL on OBSERVED daf

AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

Kk ok Kk kkkkkkk

* x

217 *%SET PRINT 0

Ak Kk kKkKk kKKK

Kk ok Kk kK kkkkk

* x

218 %*SET NOGRAD

Ak Kk KhkKkKk kKKK

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 2.00000e+01 1.41405e+00 0.00000e+00 2.00000e+02

Kk ok Kk kK k ok kkk

* x

219 *xSET ERR 0.5

Kk Kk kKkKk Kk kKK

Kk ok Kk ok ok kokkkk

* x

220 **SET PRINT 0

*kkKkkKkKk kKKK
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* ok ok ok ok ok ok ok ok ok

% 221 *xSET STR 1

* Kk ok ok ok kkkkk

* ok ok ok ok ok ok ok ok x

* % 222 x*MIGRAD 500 1

* Kk ok ok ok k ok ok ok ok

MIGRAD MINIMIZATION HAS CONVERGED.

MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=9.51914 FROM MIGRAD STATUS=CONVERGED 12 CALLS 13 TOTAL
EDM=3.92694e-05 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.92661e+01 1.34308e+00 5.03433e-05 -2.75300e-01
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 9.51914 for poi fixed at = 2.08163 fit time : Real time
[#0] PROGRESS:Eval —-— OBSERVED DATA : gmu = 6.83782 condNLL = 9.51914 uncond 6.10022
[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest —-- Find Dbest conditional NLL on ASIMOV data
AsymptoticCalculator: :EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

khk Kk Kk kK kKKK

*% 223 **SET PRINT 0

Kk ok kK kK kK x
Kk ok ok Kk Kk Kk kK x
*% 224 xxSET NOGRAD
Kk ko Kk kK kK x

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 1.92661e+01 1.34308e+00 0.00000e+00 2.00000e+02
* ok ok ok ok k ok ok ok ok
% 225 *xSET ERR 0.5

* Kk ok ok kkkkkk

* h ok ok kk ok ok k Kk

*% 226 **SET PRINT 0

* Kk ok k ok kkkk ok

* ok ok ok kk ok ok kk

*%x 227 *+*SET STR 1

* Kk ok ok Kk kkk ok ok

* kk ok kk ok ok k Kk

*x 228 *x*MIGRAD 500 1
* Kk ok ok ok kkk ok ok

MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=12.2246 FROM MIGRAD STATUS=CONVERGED 12 CALLS 13 TOTAL
EDM=3.8329e-07 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.94901e+01 1.34711e+00 5.57426e-05 -2.72571e-02
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 12.2246 for poi fixed at = 2.08163 fit time : Real time
[#0] PROGRESS:Eval —-— ASIMOV data gmu_A = 12.4258 condNLL = 12.2246 uncond 6.01169
[#0] PROGRESS:Eval -- poi = 2.08163 gmu = 6.83782 gmu_A = 12.4258 sigma = 0.59053 CLsplusb = 0.0044
[#1] INFO:0ObjectHandling —-- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(
[#1] INFO:Eval —-- AsymptoticCalculator::GetHypoTest: - perform an hypothesis test for POI ( mu ) =
[#0] PROGRESS:Eval -—- AsymptoticCalculator::GetHypoTest - Find Dbest conditional NLL on OBSERVED daf
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

*hkkhkkkkkk kK

*% 229 %%xSET PRINT 0

Kk Kk k kK k kK kK

Kk KkkKkKk kKKK
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230 **SET NOGRAD
Kk ko kK Kk ok x
PARAMETER DEFINITIONS:
NO. NAME
1B
Kk ok kK kK kK x
231 **SET ERR 0.5

*k Kk kK Kk kK kK

* *

VALUE

2.00000e+01 1.41

* *
kkKkkKkKk kKKK

232 *%SET PRINT 0

*kkkhk kK Kk kK kK

* x

*k Kk kK Kk kKKK

233 *%xSET STR 1

*kkhkkk Kk kK kK

* *

Hok kK ok kK ok ok
234 *x*MIGRAD
*ok kK Kk kK ok ok
MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND E
FCN=9.99118 FROM MIGRAD
EDM=4.72399e-05

500

* *

STEP SIZE

STATUS=CONVERGED

LIMITS

405e+00 0.00000e+00 2.00000e+02

RROR MATRIX.
12 CALLS
STRATEGY= 1

13 TOTAL
ERROR MATRIX ACCURATE

EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.92319e+01 1.34184e+00 5.15385e-05 -3.01987e-01
ERR DEF= 0.5
AsymptoticCalculator::EvaluateNLL - value = 9.99118 for poi fixed at = 2.20408 fit time Real time
[#0] PROGRESS:Eval —- OBSERVED DATA gmu = 7.78191 condNLL = 9.99118 uncond 6.10022
[#0] PROGRESS:Eval —-- AsymptoticCalculator::GetHypoTest —-- Find best conditional NLL on ASIMOV data

AsymptoticCalculator: :EvaluateNLL
*khkkkkkkhkkkk
235 x*SET PRINT 0

Kk Kk kK Kk kK kK

* *

Kk ok ok Kk Kk kK x
236 **SET NOGRAD

Ak Kk kK Kk Kk kKK

PARAMETER DEFINITIONS:

* *

NO. NAME VALUE STE
1B 1.92319%9e+01 1.34
Kk ok ok Kk Kk Kk kK x
*% 237 xxSET ERR 0.5

Kk K kK kK k Kk
Kk Kk ok kK kK
238 **SET PRINT 0

Ak Kk hkKkKk kKKK

* x

Kk kK Kk k kK ok Kk
239 xxSET STR 1

Ak Kk hkKkKk Kk kKK

* x

Hok kK Kok kK ok k
240 *+*MIGRAD
Hok kK ok kK ok ok
MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND E
FCN=12.8368 FROM MIGRAD
EDM=4.36134e-07

500

* x

STATUS=CONVERGED

using Minuit / Migrad with strategy

P SIZE
184e+00

LIMITS

0.00000e+00 2.00000e+02

RROR MATRIX.
12 CALLS
STRATEGY= 1

EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.94629e+01 1.34615e+00 5.70556e-05 -2.90782e-02
ERR DEF= 0.5
AsymptoticCalculator::EvaluateNLL - value = 12.8368 for poi fixed at =

13 TOTAL
ERROR MATRIX ACCURATE

2.20408 fit time

1 and tolerance 1

Real time
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[#0] PROGRESS:Eval —--— ASIMOV data gmu_A = 13.6503 condNLL = 12.8368 uncond 6.01169

[#0] PROGRESS:Eval -- poi = 2.20408 gmu = 7.78191 gmu_A = 13.6503 sigma = 0.596563 CLsplusb = 0.002¢
[#1] INFO:0ObjectHandling —-- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(
[#1] INFO:Eval —-- AsymptoticCalculator::GetHypoTest: - perform an hypothesis test for POI ( mu ) =
[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest - Find Dbest conditional NLL on OBSERVED daf
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

* ok ok ok ok kkkkk

% 241 *xSET PRINT 0

* ok Kk ok ok ok ok ok ok ok

Kk Kk Kk kK Kk kK kK

* K

242 x%xSET NOGRAD

* ok Kk ok ok ok ok k ok x

PARAMETER DEFINITIONS:

* K

NO. NAME VALUE STEP SIZE LIMITS
1B 2.00000e+01 1.41405e+00 0.00000e+00 2.00000e+02
Kk kK Kk kK x
243 x+xSET ERR 0.5

* ok Kk ok ok ok ok ok ok ok

Kk Kk kK Kk kK kK

* K

244 xxSET PRINT 0

* ok Kk ok ok ok ok ok ok ok

*kkkhk kK Kk kK kK

* K

245 xxSET STR 1

* ok Kk ok ok ok ok ok ok ok

Ak Kk kK Kk kKKK

* K

246 **MIGRAD 500 1

*ok kK Kok ok Kk ok
MIGRAD MINIMIZATION HAS CONVERGED.

MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=10.4846 FROM MIGRAD STATUS=CONVERGED 15 CALLS 16 TOTAL

EDM=9.21508e-09 STRATEGY= 1 ERROR MATRIX ACCURATE

EXT PARAMETER STEP FIRST

NO.
1

NAME VALUE ERROR SIZE DERIVATIVE
B 1.92098e+01 1.34118e+00 5.20812e-05 4.21768e-03
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 10.4846 for poi fixed at = 2.32653 fit time : Real time

[#0]
[#0]

PROGRESS:Eval —- OBSERVED DATA : gmu = 8.76878 condNLL = 10.4846 uncond 6.10022
PROGRESS:Eval —-- AsymptoticCalculator::GetHypoTest —-- Find Dbest conditional NLL on ASIMOV data

AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

Kk Kk hkkk Kk kKK

* K

247 xxSET PRINT 0

* ok Kk ok ok k ok Kk k ok

Ak Kk kK Kk kKKK

* K

248 x+SET NOGRAD

* Kk Kk ok kk ok kkk

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 1.92098e+01 1.34118e+00 0.00000e+00 2.00000e+02

* Kk ok ok kk ok k kK

*% 249 xxSET ERR 0.5

Kk kkkk Kk kkk

* Kk ok kkk ok ok kk

% 250 xxSET PRINT 0

Kk ok kkk Kk kk Kk

* Kk ok ok kk Kk kk Kk

*% 251 xxSET STR 1

Kk kK k Kk kkKk

* Kk ok ok k Kk ok ok ok ok
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*x 252 *+*MIGRAD 500 1

* ok ok ok ok kkkkk

MIGRAD MINIMIZATION HAS CONVERGED.

MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=13.4665 FROM MIGRAD STATUS=CONVERGED 12 CALLS 13 TOTAL

EDM=4.12543e-07 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.94373e+01 1.34522e+00 5.83837e-05 -2.82838e-02
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 13.4665 for poi fixed at = 2.32653 fit time : Real time
[#0] PROGRESS:Eval —-— ASIMOV data gmu_A = 14.9097 condNLL = 13.4665 uncond 6.01169
[#0] PROGRESS:Eval —-- poi = 2.32653 gmu = 8.76878 gmu_A = 14.9097 sigma = 0.602525 CLsplusb = 0.001
[#1] INFO:ObjectHandling —-- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(

[#1] INFO:Eval -- AsymptoticCalculator::GetHypoTest: - perform an hypothesis test for POI ( mu ) =
[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest - Find Dbest conditional NLL on OBSERVED dat
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

* ok Kk ok ok ok ok ok ok ok

*% 253 xxSET PRINT 0

*kkhkkkkkkhkkKkk

* ok Kk ok ok ok ok ok ok k

*% 254 *xSET NOGRAD

*kkhkkhkkkkkhkkk*k

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 2.00000e+01 1.41405e+00 0.00000e+00 2.00000e+02
Kk ok ok ok ok ok ok ok x
% 255 *xSET ERR 0.5

*kkkhkkkkkhkkKkk

* ok Kk ok ok k ok ok ok k

*% 256 xxSET PRINT 0

*kkhkkhkkkkkhkkkk

* ok ko Kk k ok Kk k ok

% 257 *xSET STR 1

*kkkkkkkhkkk*k

* ok Kk ok ok k kK kk

%% 258 **MIGRAD 500 1

*kkkhkkkkkkkk

MIGRAD MINIMIZATION HAS CONVERGED.

MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=10.9983 FROM MIGRAD STATUS=CONVERGED 15 CALLS 16 TOTAL

EDM=1.15968e-08 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.91802e+01 1.34006e+00 5.32767e-05 4.73213e-03
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 10.9983 for poi fixed at = 2.44898 fit time : Real time
[#0] PROGRESS:Eval -- OBSERVED DATA : gmu = 9.79623 condNLL = 10.9983 uncond 6.10022
[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest —-- Find Dbest conditional NLL on ASIMOV data
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1
* k ok ok kk ok ok kk

*% 259 xxSET PRINT 0

*kkkkkkkhkkk*k

* k ok ok kk ok ok kk

*%x 260 **SET NOGRAD

*kkkkkkkkk*k

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
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1B 1.91802e+01 1.34006e+00 0.00000e+00 2.00000e+02
Kk ok kK k ok ok kK
% 261 *xSET ERR 0.5
* ok ok ok ok ok ok ok ok x
Kk kkkkkk kK
* % 262 x*SET PRINT 0
* ok ok ok ok ok ok ok ok k
Kk kkkkkk kK
*%x 263 **SET STR 1
* ok Kk ok ok ok ok ok ok ok
Kk ok kkkkk kK
**x 264 xx*MIGRAD 500 1
* ok Kk ok ok ok ok ok kx
MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=14.1127 FROM MIGRAD STATUS=CONVERGED 12 CALLS 13 TOTAL
EDM=4.56297e-07 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.94131e+01 1.34431e+00 5.97060e-05 -2.97494e-02
ERR DEF= 0.5
AsymptoticCalculator::EvaluateNLL - value = 14.1127 for poi fixed at = 2.44898 fit time Real time
[#0] PROGRESS:Eval —-— ASIMOV data gmu_A = 16.202 condNLL = 14.1127 uncond 6.01169
[#0] PROGRESS:Eval -- poi = 2.44898 gmu = 9.79623 gqmu_A = 16.202 sigma = 0.608417 CLsplusb = 0.0008
[#1] INFO:ObjectHandling —- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(
[#1] INFO:Eval -- AsymptoticCalculator::GetHypoTest: - perform an hypothesis test for POI ( mu ) =
[#0] PROGRESS:Eval —-- AsymptoticCalculator::GetHypoTest - Find Dbest conditional NLL on OBSERVED dat
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1
*kkkhkkkkkkkk
*% 265 **SET PRINT 0
*kkkkkkk kK
*kkkhkkkkkkkk
**x 266 *x*xSET NOGRAD
*kkhkkkkkk kK
PARAMETER DEFINITIONS:
NO. NAME VALUE STEP SIZE LIMITS
1B 2.00000e+01 1.41405e+00 0.00000e+00 2.00000e+02
*kkkkkkkhkkk*k
% 267 *xSET ERR 0.5
*kkhkkkkkk kK
*kkhkkkkkkkk*k
*x 268 **xSET PRINT 0
*hkkhkkkkkk kK
*kkkkkkkkk*k
% 269 *xSET STR 1
*hkkhkkkkkk kK
*kkhkkkkkkkk*k
*x 270 **MIGRAD 500 1
*hkkhkkkkkk kK
MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.
FCN=11.5313 FROM MIGRAD STATUS=CONVERGED 15 CALLS 16 TOTAL
EDM=1.43102e-08 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.91521e+01 1.33898e+00 5.44881e-05 5.25748e-03
ERR DEF= 0.5
AsymptoticCalculator::EvaluateNLL - value = 11.5313 for poi fixed at = 2.57143 fit time Real time
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[#0] PROGRESS:Eval —--— OBSERVED DATA : gmu = 10.8621 condNLL = 11.5313 uncond 6.10022

[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest —-- Find Dbest conditional NLL on ASIMOV data
AsymptoticCalculator: :EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

* ok ok ok ok ok ok ok ok ok

x% 271 xxSET PRINT 0

Kk ok kK kK kK ok
Kk ok ok Kk Kk Kk kK x
*% 272 xxSET NOGRAD
Kk ok kK kK kK x

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 1.91521e+01 1.33898e+00 0.00000e+00 2.00000e+02
* ok ok ok ok ok ok ok ok ok
% 273 *xSET ERR 0.5

*hkkhkkkkkkKkk

LR S S i i

*% 274 xxSET PRINT 0

*kkhkkkkkkkk

khk Kk kK KK KKK

*%x 275 **SET STR 1

*kkhkkhkkkkkkk*k

kk kKR kKK KKK

*%x 276 **MIGRAD 500 1

*kkhkkkkkkkk*k

MIGRAD MINIMIZATION HAS CONVERGED.

MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=14.7744 FROM MIGRAD STATUS=CONVERGED 12 CALLS 13 TOTAL

EDM=5.00858e-07 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.93903e+01 1.34343e+00 6.10296e-05 -3.11721e-02
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 14.7744 for poi fixed at = 2.57143 fit time : Real time
[#0] PROGRESS:Eval —-— ASIMOV data gmu_A = 17.5255 condNLL = 14.7744 uncond 6.01169
[#0] PROGRESS:Eval -- poi = 2.57143 gmu = 10.8621 gmu_A = 17.5255 sigma = 0.614241 CLsplusb = 0.000
[#1] INFO:0ObjectHandling —- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(

[#1] INFO:Eval —-- AsymptoticCalculator::GetHypoTest: - perform an hypothesis test for POI ( mu ) =
[#0] PROGRESS:Eval -—- AsymptoticCalculator::GetHypoTest - Find Dbest conditional NLL on OBSERVED daf
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1
*hkkhkkkkkk kK

*% 277 xxSET PRINT 0

* ok Kk okkk ok Kk k ok

*kkhkkkkkk kK

*% 278 xxSET NOGRAD

* Kk ok ok ok k ok ok kk

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 2.00000e+01 1.41405e+00 0.00000e+00 2.00000e+02
* Kk ok kK kkkkk
*% 279 xxSET ERR 0.5

Kok kK Kk kK ok Kk

Kk kK Kk kK ok Kk

*%x 280 %*SET PRINT 0
Kok Kk Kk kK ok Kk

Kk kK Kk kK ok Kk

*%x 281 %%xSET STR 1
Kok kK Kk kK ok Kk

Ak Kk kKkKk kKKK
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*% 282 xxMIGRAD 500 1

*k Kk kK Kk kK kK

MIGRAD MINIMIZATION HAS CONVERGED.

MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=12.0824 FROM MIGRAD STATUS=CONVERGED 15 CALLS 16 TOTAL
EDM=1.73593e-08 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.91256e+01 1.33793e+00 5.57122e-05 5.79151e-03
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 12.0824 for poi fixed at = 2.69388 fit time : Real time
[#0] PROGRESS:Eval —-— OBSERVED DATA : gmu = 11.9644 condNLL = 12.0824 uncond 6.10022
[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest —-—- Find Dbest conditional NLL on ASIMOV data
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1
*kkhkkkkkkhkkkk

*% 283 xxSET PRINT 0

* kK kK kK kK Kk
Kk Kk Kk ok kK
*x 284 x+xSET NOGRAD
Kk K kK kK kK Kk

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 1.91256e+01 1.33793e+00 0.00000e+00 2.00000e+02
* Kk ok ok ok kkkkk
* % 285 x*SET ERR 0.5
Kk ok kK k ok ok kK
* Kk ok ok ok k ok kkk
* * 286 x*SET PRINT 0
Kk kkkkkk kK
* Kk ok ok ok kkk ok ok
*%x 287 *xSET STR 1
Kk khkkkkk kK
* Kk ok k ok kkkkk
* % 288 x*MIGRAD 500 1

*hkkhkkkkkkkk

MIGRAD MINIMIZATION HAS CONVERGED.

MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=15.451 FROM MIGRAD STATUS=CONVERGED 12 CALLS 13 TOTAL

EDM=5.46069e-07 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.93686e+01 1.34258e+00 6.23527e-05 -3.25530e-02
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 15.451 for poi fixed at = 2.69388 fit time : Real time
[#0] PROGRESS:Eval —- ASIMOV data gmu_A = 18.8787 condNLL = 15.451 uncond 6.01169
[#0] PROGRESS:Eval -- poi = 2.69388 gmu = 11.9644 gmu_A = 18.8787 sigma = 0.620001 CLsplusb = 0.000
[#1] INFO:ObjectHandling —-- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(

[#1] INFO:Eval —-- AsymptoticCalculator::GetHypoTest: - perform an hypothesis test for POI ( mu ) =
[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest - Find Dbest conditional NLL on OBSERVED dat
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

* k ok ok kk ok ok kk

*% 289 xxSET PRINT 0

*kkkkkkkk*k

* ok ok ok ok k ok ok kk

*% 290 x»xSET NOGRAD

*kkkkkkkkk*k

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
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1B 2.00000e+01
Kk ok kK k ok ok kK
% 291 *xSET ERR 0.5

Kk ok ok Kk Kk Kk kK x
Kk ko kK ok ok x
292 x*SET PRINT 0

* ok Kk ok ok ok ok kK ok

* K

*k Kk kK Kk kK kK

293 xxSET STR 1

* ok Kk ok ok ok ok ok ok ok

* x

Kk ok kkkkk kK
294 x*MIGRAD
Kk ok ok ok ok ok ok ok

MIGRAD MINIMIZATION HAS CONVERGED.

500

* K

1.41405e+00

0.00000e+00 2.00000e+02

MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=12.6508 FROM MIGRAD
EDM=2.07436e-08
EXT PARAMETER

NO. NAME VALUE ER

1 B 1.91005e+01 1.33

ERR DE
AsymptoticCalculator::EvaluateNLL -

[#0] OBSERVED DATA
[#0]

AsymptoticCalculator: :EvaluateNLL
* kkkkkkk kK

295 xxSET PRINT 0

* ok Kk ok ok ok ok ok ok ok

PROGRESS:Eval —-

* K

Kk Kk kK Kk kK kK

296 x*SET NOGRAD
Kk ok ko k ok ok ok x

PARAMETER DEFINITIONS:

* K

NO. NAME VALUE STE
1B 1.91005e+01 1.33
Kk kkkkkk kK
% 297 xxSET ERR 0.5

Kk ok ok Kk kK ok ok x
Kk kK kK kK k
298 xxSET PRINT 0

* ok Kk ok ok k ok Kk k Kk

* K

Kk Kk hkKkk Kk kKK

299 xxSET STR 1

* ok Kk ok ok k ok ok k ok

* K

* Kk ok ok kkkk kK

300 *+*MIGRAD

Kk ok hkkk Kk kkKk

MIGRAD MINIMIZATION HAS CONVERGED.

MIGRAD WILL VERIFY CONVERGENCE AND E

FCN=16.1416 FROM MIGRAD
EDM=5.91756e-07

500

* K

STATUS=CONVERGED

STATUS=CONVERGED

15 CALLS
STRATEGY= 1

STEP FIRST
ROR SIZE DERIVATIVE
691e+00 5.69462e-05 6.33204e-03
F= 0.5
value = 12.6508 for poi fixed at =

amu = 13.1012 condNLL =

using Minuit / Migrad with strategy

LIMITS
0.00000e+00

P SIZE

691e+00 2.00000e+02

RROR MATRIX.
12 CALLS
STRATEGY= 1

EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.93480e+01 1.34176e+00 6.36739%9e-05 -3.38921e-02
ERR DEF= 0.5
AsymptoticCalculator::EvaluateNLL - value = 16.1416 for poi fixed at =

16 TOTAL
ERROR MATRIX ACCURATE

2.81633 fit time
12.6508 uncond 6.10022
PROGRESS:Eval —-- AsymptoticCalculator::GetHypoTest —-- Find Dbest conditional NLL on ASIMOV data
1 and tolerance 1

13 TOTAL
ERROR MATRIX ACCURATE

2.81633 fit time

CLsplusb

Real time

Real time

0.000:

[#0] PROGRESS:Eval —-— ASIMOV data gmu_A = 20.2599 condNLL = 16.1416 uncond 6.01169

[#0] PROGRESS:Eval -— poi = 2.81633 gmu = 13.1012 gqmu_A = 20.2599 sigma = 0.625697

[#1] INFO:ObjectHandling —-- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(
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[#1] INFO:Eval -- AsymptoticCalculator::GetHypoTest: — perform an hypothesis test for POI ( mu ) =
[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest - Find Dbest conditional NLL on OBSERVED dat
AsymptoticCalculator: :EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

* ok ok ok ok ok ok ok ok ok

% 301 **SET PRINT 0
* Kk ok ok Kk k ok kkk

* ok ok ok ok ok ok k ok x

* * 302 **SET NOGRAD

* Kk ok ok ok kkk ok ok

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 2.00000e+01 1.41405e+00 0.00000e+00 2.00000e+02
* ok ok ok ok ok ok ok ok ok
% 303 *xSET ERR 0.5

* Kk ok ok ok k ok ok ok ok

* ok Kk ok ok ok ok ok kk

% 304 **SET PRINT 0

* Kk ok ok ok k ok ok k ok

* ok Kk ok ok ok ok ok ok k

* % 305 *xSET STR 1

* Kk ok ok ok k ok ok kk

* ok Kk ok ok ok ok ok ok k

*% 306 *+*MIGRAD 500 1
* Kk ok ok ok k ok k ok ok

MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=13.2357 FROM MIGRAD STATUS=CONVERGED 15 CALLS 16 TOTAL
EDM=2.44605e-08 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.90766e+01 1.33593e+00 5.81877e-05 6.87718e-03
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 13.2357 for poi fixed at = 2.93878 fit time : Real time
[#0] PROGRESS:Eval —-— OBSERVED DATA : gmu = 14.271 condNLL = 13.2357 uncond 6.10022
[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest —-- Find Dbest conditional NLL on ASIMOV data
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

* kk ok kk ok ok kk

% 307 **SET PRINT 0
* Kk ok ok ok k ok kkk

* k ok ok kk ok ok kk

*% 308 x»*SET NOGRAD

* Kk ok ok ok kkk ok ok

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 1.90766e+01 1.33593e+00 0.00000e+00 2.00000e+02
Kk khkkk Kk kk Kk
% 309 *xSET ERR 0.5

* Kk ok ok ok ok ok kkk

Kk ok hkkk Kk kk Kk

% 310 **SET PRINT 0

* Kk ok kk ok ok ok ok ok

Kk ok kK k Kk k kK

% 311 *xSET STR 1

* Kk ok ok Kk kkok ok ok

Kk ok hkkk Kk kk Kk

** 312 x*MIGRAD 500 1
* Kk ok ok ok kkkkk

MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.
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FCN=16.8456 FROM MIGRAD STATUS=CONVERGED 12 CALLS 13 TOTAL
EDM=6.37792e-07 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.93285e+01 1.34096e+00 6.49922e-05 -3.51908e-02
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 16.8456 for poi fixed at = 2.93878 fit time : Real time
[#0] PROGRESS:Eval —-— ASIMOV data gmu_A = 21.6679 condNLL = 16.8456 uncond 6.01169
[#0] PROGRESS:Eval -—- poi = 2.93878 gqmu = 14.271 gmu_A = 21.6679 sigma = 0.631332 CLsplusb = 7.9142:
[#1] INFO:ObjectHandling —- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(
[#1] INFO:Eval -- AsymptoticCalculator::GetHypoTest: - perform an hypothesis test for POI ( mu ) =
[#0] PROGRESS:Eval —-- AsymptoticCalculator::GetHypoTest - Find Dbest conditional NLL on OBSERVED datf
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

*kkhkkkkkkkkk

*% 313 *%xSET PRINT 0

Kok kK Kk kK ok Kk
Kk kK Kk k kK ok Kk
*x 314 %xxSET NOGRAD
Kok kK Kk kK ok Kk

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 2.00000e+01 1.41405e+00 0.00000e+00 2.00000e+02
Kk ok kK kK kK X
% 315 *xSET ERR 0.5
Kk kK kK kK x
Kk ok kK kK kK X
% 316 **SET PRINT 0
Kk kK kK kK x
Kk ok ok Kk kK kK X
% 317 *xSET STR 1
Kk kK kK kK x
Kk ok kK kK kK x
*+% 318 xxMIGRAD 500 1

Hok kK ok kK ok ok
MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=13.8363 FROM MIGRAD STATUS=CONVERGED 15 CALLS 16 TOTAL
EDM=2.85046e-08 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.90539%e+01 1.33497e+00 5.94346e-05 7.42531e-03
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 13.8363 for poi fixed at = 3.06122 fit time : Real time
[#0] PROGRESS:Eval —- OBSERVED DATA : gmu = 15.4721 condNLL = 13.8363 uncond 6.10022
[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest —-- Find Dbest conditional NLL on ASIMOV data
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1
*kkkkkkkkk*k

% 319 xxSET PRINT 0

Kk kK Kk kK ok Kk
Kk kK Kk kK ok Kk
*% 320 x»xSET NOGRAD
Kk kK Kk kK ok Kk

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 1.90539%9e+01 1.33497e+00 0.00000e+00 2.00000e+02
* Kk ok ok kkkk ok ok
% 321 *xSET ERR 0.5

*kkkkKkk kKKK
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* ok Kk ok ok ok ok ok ok ok

* x

322 xxSET PRINT 0

Ak Kk kKkKk Kk kKK

* ok ok ok ok ok ok ok ok ok

* x

323 x*xSET STR 1

Kk Kk KkKkKk kKKK

* ok Kk ok ok ok ok kK ok

* x

324 x»xMIGRAD 500 1

kK KkkKkKk kKKK

MIGRAD MINIMIZATION HAS CONVERGED.

MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=17.5624 FROM MIGRAD STATUS=CONVERGED 12 CALLS 13 TOTAL

EDM=6.84039e-07 STRATEGY= 1 ERROR MATRIX ACCURATE

EXT PARAMETER STEP FIRST

NO.
1

NAME VALUE ERROR SIZE DERIVATIVE
B 1.93100e+01 1.34019e+00 6.63066e-05 -3.64497e-02
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 17.5624 for poi fixed at = 3.06122 fit time : Real time

[#0]
[#0]
[#1]

[#1]
[#0]

PROGRESS:Eval —-- ASIMOV data gmu_A = 23.1013 condNLL = 17.5624 uncond 6.01169
PROGRESS:Eval —- poi = 3.06122 gmu = 15.4721 gmu_A = 23.1013 sigma = 0.636908 CLsplusb = 4.186
INFO:0bjectHandling —-- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(

INFO:Eval —-- AsymptoticCalculator::GetHypoTest: - perform an hypothesis test for POI ( mu ) =
PROGRESS:Eval —-- AsymptoticCalculator::GetHypoTest - Find Dbest conditional NLL on OBSERVED datf

AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

Ak Kk kK Kk kK kK

* K

325 *xSET PRINT 0

* ok Kk ok ok ok ok ok ok ok

Kk Kk kK Kk kKKK

* K

326 *+xSET NOGRAD

* ok Kk ok ok ok ok k ok ox

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS

1B 2.00000e+01 1.41405e+00 0.00000e+00 2.00000e+02

Ak Kk kK Kk kKKK

* K

327 xxSET ERR 0.5

* ok Kk ok ok ok ok ok ok ok

Kk Kk kK Kk kKKK

* K

328 xxSET PRINT 0

* ok Kk ok ok k ok Kk k ok

Kk khkhkKkk Kk kKK

* K

329 xxSET STR 1

* ok Kk ok ok k ok Kk k ok

Ak Kk kkKk kKKK

* K

330 *x*MIGRAD 500 1

*ok kK Kk kK ok ok
MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=14.4517 FROM MIGRAD STATUS=CONVERGED 15 CALLS 16 TOTAL
EDM=3.28685e-08 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.90324e+01 1.33405e+00 6.06851e-05 7.97492e-03
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 14.4517 for poi fixed at = 3.18367 fit time : Real time
[#0] PROGRESS:Eval —-— OBSERVED DATA : gmu = 16.703 condNLL = 14.4517 uncond 6.10022
[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest —-—- Find best conditional NLL on ASIMOV data
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

Kk kkKkKk kKKK
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* *

331 x*xSET PRINT 0

*k Kk kK Kk kK kK

Ak Kk kKkKk Kk kKK

* *

332 xxSET NOGRAD

*kkhkkkkkk kK

PARAMETER DEFINITIONS:

kkKkkKkKk kKKK

* x

*kkkhk kK Kk kK kK

*k Kk kK Kk kKKK

* *

*kkhkkk Kk kK kK

kkk kK Kk kKKK

* *

Kk Kk kK Kk kK kK

kkKkkKkKk kKK Kk

* *

NO. NAME VALUE STEP SIZE LIMITS
1B 1.90324e+01 1.33405e+00 0.00000e+00 2.00000e+02
333 **SET ERR 0.5
334 xxSET PRINT 0
335 *xSET STR 1
336 x*x*MIGRAD 500 1

Hok kK ok k kK ok ok
MIGRAD MINIMIZATION HAS CONVERGED.

MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=18.2912 FROM MIGRAD STATUS=CONVERGED 12 CALLS 13 TOTAL

EDM=7.3038e-07 STRATEGY= 1 ERROR MATRIX ACCURATE

EXT PARAMETER STEP FIRST

NO.
1

NAME VALUE ERROR SIZE DERIVATIVE
B 1.92923e+01 1.33944e+00 6.76161le-05 -3.76698e-02
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 18.2912 for poi fixed at = 3.18367 fit time : Real time

[#0]
[#0]
[#1]

[#11]
[#0]

PROGRESS:Eval —- ASIMOV data gmu_A = 24.559 condNLL = 18.2912 uncond 6.01169
PROGRESS:Eval —- poi = 3.18367 gmu = 16.703 gmu_A = 24.559 sigma = 0.642426 CLsplusb = 2.18555¢
INFO:0bjectHandling —-—- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(

INFO:Eval —-- AsymptoticCalculator::GetHypoTest: - perform an hypothesis test for POI ( mu ) =
PROGRESS:Eval —- AsymptoticCalculator::GetHypoTest - Find Dbest conditional NLL on OBSERVED daf

AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

* ok Kk ok ok ok ok ok ok ok

* *

337 xxSET PRINT 0

Kk ok Kk kK Kk kKK Kk

* ok Kk okkk ok Kk k ok

* *

338 *xSET NOGRAD

Kk ok Kk kkKkkkkk

PARAMETER DEFINITIONS:

* ok ok ok kk kK kK

* x

Kk ok ok ok kk ok kK k

* ok k ok kk kK kK

* x

Kk ok Kk kkkk ok kk

* ok k ok kk ok k kK

* *

Kk ok Kk ok kkkkkk

* Kk k ok Kk kkk kK

* x

NO. NAME VALUE STEP SIZE LIMITS
1B 2.00000e+01 1.41405e+00 0.00000e+00 2.00000e+02
339 x*xSET ERR 0.5
340 xxSET PRINT 0
341 xxSET STR 1
342 x»xMIGRAD 500 1

Kok kK Kok ok Kk k
MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.
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FCN=15.0815 FROM MIGRAD STATUS=CONVERGED 15 CALLS 16 TOTAL
EDM=3.75431e-08 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.90118e+01 1.33316e+00 6.19376e-05 8.52477e-03
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 15.0815 for poi fixed at = 3.30612 fit time : Real time
[#0] PROGRESS:Eval -- OBSERVED DATA : gmu = 17.9625 condNLL = 15.0815 uncond 6.10022
[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest —-—- Find Dbest conditional NLL on ASIMOV data
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

* kK

* K

* x *

* kK

* K

* x K

* Kk kK kK

343 **SET PRINT 0
Kk ko kK ok

* Kk kK kK

344 *+xSET NOGRAD

* % Kk Kk x ok ok

PARAMETER DEFINITIONS:

* kK

* K

* % *

* kK

* K

* x K

* kK

* K

* % *

* kK

* K

* % *

NO. NAME VALUE STEP SIZE LIMITS

1B 1.90118e+01 1.33316e+00 0.00000e+00 2.00000e+02
* Kk ok kK Kk Kk

345 xxSET ERR 0.5

Kk KKk Kk K

Kk KKK KK

346 xxSET PRINT 0

Kk KKk K K

Kk kKKK K

347 xxSET STR 1

Kk KKk Kk K

Kk KKK K K

348 xx*MIGRAD 500 1
Kk KKk K K

MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.
FCN=19.0316 FROM MIGRAD STATUS=CONVERGED 12 CALLS 13 TOTAL
EDM=7.76742e-07 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.92755e+01 1.33872e+00 6.89202e-05 -3.88528e-02
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 19.0316 for poi fixed at = 3.30612 fit time : Real time

[#0] PROGRESS:Eval —-— ASIMOV data gmu_A = 26.0399 condNLL = 19.0316 uncond 6.01169

[#0] PROGRESS:Eval -- poi = 3.30612 gmu = 17.9625 gmu_A = 26.0399 sigma = 0.647888 CLsplusb = 1.126!
[#1] INFO:ObjectHandling —-- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(

[#1] INFO:Eval -- AsymptoticCalculator::GetHypoTest: — perform an hypothesis test for POI ( mu

[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest - Find Dbest conditional NLL on OBSERVED dat

AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1
*kkkkkkkkk*k
*% 349 %%xSET PRINT 0
*hkkhkkkkkkkk
*kkkhkkkkkkk*k
%% 350 *x*SET NOGRAD
*hkkhkkkkkk kK

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 2.00000e+01 1.41405e+00 0.00000e+00 2.00000e+02
* Kk ok ok kkkk ok ok
% 351 *xSET ERR 0.5

*kkkkKkk kKKK
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* ok ok ok ok ok ok ok ok ok

*% 352 **SET PRINT 0

* Kk ok ok ok kkkkk

* ok ok ok ok ok ok ok ok x

* % 353 *xSET STR 1

* Kk ok ok ok k ok ok ok ok

* ok ok ok ok ok ok ok ok k

* * 354 *xMIGRAD 500 1
* Kk ok ok ok k ok k ok ok

MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=15.7248 FROM MIGRAD STATUS=CONVERGED 15 CALLS 16 TOTAL
EDM=4.25179e-08 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.89923e+01 1.33230e+00 6.31907e-05 9.07371e-03
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 15.7248 for poi fixed at = 3.42857 fit time : Real time
[#0] PROGRESS:Eval —-— OBSERVED DATA : gmu = 19.2491 condNLL = 15.7248 uncond 6.10022
[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest —-- Find Dbest conditional NLL on ASIMOV data
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

* ok Kk ok ok ok ok ok ok k

* * 355 *xSET PRINT 0
* Kk ok ok ok k ok ok ok ok

* ok Kk ok ok k ok ok ok k

*% 356 xxSET NOGRAD

* Kk ok ok ok kkkkk

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 1.89923e+01 1.33230e+00 0.00000e+00 2.00000e+02
* ok ok ok ok k ok ok kk
% 357 *xSET ERR 0.5

*kkkkkkkhkkk*k

* ok Kk ok ok k ok ok ok k

*% 358 %%SET PRINT 0

*kkhkkhkkkkkkk*k

* ok Kk ok ok k ok Kk k Kk

*x 359 xxSET STR 1

*kkkkkkkk*k

* ok kok ok k ok ok k ok

**x 360 **MIGRAD 500 1

*kkkkkkkkkk

MIGRAD MINIMIZATION HAS CONVERGED.

MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=19.7831 FROM MIGRAD STATUS=CONVERGED 12 CALLS 13 TOTAL

EDM=8.22996e-07 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.92595e+01 1.33802e+00 7.02182e-05 -3.99989e-02
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 19.7831 for poi fixed at = 3.42857 fit time : Real time
[#0] PROGRESS:Eval —-— ASIMOV data gmu_A = 27.5428 condNLL = 19.7831 uncond 6.01169

[#0] PROGRESS:Eval -- poi = 3.42857 gmu = 19.2491 gmu_A = 27.5428 sigma = 0.653295 CLsplusb = 5.736:
[#1] INFO:0ObjectHandling —-- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(

[#1] INFO:Eval —-- AsymptoticCalculator::GetHypoTest: - perform an hypothesis test for POI ( mu ) =
[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest - Find best conditional NLL on OBSERVED daf
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

Kk KkkKkKk kKKK
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*% 361 **SET PRINT 0
Kk kK Kk kK kK

*ok Kk Kk kK ok Kk

*% 362 *x%xSET NOGRAD

Kk kK Kk kK ok Kk

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE
1B 2.00000e+01 1.41405e+00
Kk ok kK kK kK x
*% 363 **SET ERR 0.5
Kk Kk kK kK ok
Kk ok kK kK kK x
*% 364 %%xSET PRINT 0
Kk kK kK kK x
Kk ok kK kK kK x
*%x 365 *x*xSET STR 1

Kk K kK kK kK Kk
Kk Kk kK kK kK
*x 366 *+*MIGRAD
Kk K kK kK kK Kk

MIGRAD MINIMIZATION HAS CONVERGED.

500 1

LIMITS

0.00000e+00 2.00000e+02

MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=16.3811 FROM MIGRAD STATUS=CONVERGED 15 CALLS 16 TOTAL
EDM=4.77811e-08 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.89736e+01 1.33146e+00 6.44433e-05 9.62073e-03
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 16.3811 for poi fixed at = 3.55102 fit time Real time
[#0] PROGRESS:Eval —- OBSERVED DATA gmu = 20.5617 condNLL = 16.3811 uncond 6.10022
[#0] PROGRESS:Eval —-- AsymptoticCalculator::GetHypoTest —-- Find best conditional NLL on ASIMOV data

AsymptoticCalculator::EvaluateNLL
*kkkkkkkkk*k
* % 367 **xSET PRINT 0
*kkhkkkkkk kK
*kkkhkkkkkkk*k
* * 368 *xSET NOGRAD
*kkhkkkkkk kK

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE
1B 1.89736e+01 1.33146e+00
Kk ok ok Kk Kk kK kX
*%x 369 *x*xSET ERR 0.5

* Kk ok kkkkk kK

* Kk ok ok kkkk ok ok

%% 370 **SET PRINT 0
* Kk ok ok Kk k Kk kk Kk

* Kk ok ok ok k ok okkk

% 371 *xSET STR 1

* Kk ok kkk Kk kkk

* Kk ok ok ok kkokkk

%% 372 **MIGRAD
* Kk ok kK kkk kK

MIGRAD MINIMIZATION HAS CONVERGED.

500 1

using Minuit / Migrad with strategy

LIMITS

0.00000e+00 2.00000e+02

MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=20.5451 FROM MIGRAD
EDM=8.6909e-07

EXT PARAMETER

NO. NAME

VALUE ERROR

STATUS=CONVERGED
STRATEGY= 1

12 CALLS 13 TOTAL
ERROR MATRIX ACCURATE

STEP FIRST

SIZE DERIVATIVE
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1 B 1.92441e+01 1.33734e+00 7.15097e-05 -4.11100e-02
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 20.5451 for poi fixed at = 3.55102 fit time : Real time
[#0] PROGRESS:Eval —--— ASIMOV data gmu_A = 29.0668 condNLL = 20.5451 uncond 6.01169

[#0] PROGRESS:Eval -- poi = 3.55102 gmu = 20.5617 gnu_A = 29.0668 sigma = 0.65865 CLsplusb = 2.8869
[#1] INFO:0ObjectHandling —- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(
[#1] INFO:Eval —-- AsymptoticCalculator::GetHypoTest: - perform an hypothesis test for POI ( mu ) =
[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest - Find Dbest conditional NLL on OBSERVED datf
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

* ok ok ok ok ok kkkk

% 373 *xSET PRINT 0

Kk ok kK Kk Kk kK ok
Kk kK kK kK x
*% 374 xxSET NOGRAD
Kk ok kK Kk Kk kK x

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 2.00000e+01 1.41405e+00 0.00000e+00 2.00000e+02
Kk khkkkkk kK
% 375 *xSET ERR 0.5

* ok Kk ok ok ok ok ok ok k

Kk khkkkkk kK

* % 376 *xSET PRINT 0

* ok Kk ok ok k ok ok ok k

Kk ok kK k ok ok kK

% 377 *xSET STR 1

* ok Kk ok ok k ok ok k ok

Kk kkkkkk kK

**x 378 xx*MIGRAD 500 1
* ok Kk ok ok k kK ok ok

MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=17.0498 FROM MIGRAD STATUS=CONVERGED 15 CALLS 16 TOTAL
EDM=5.33206e-08 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.89557e+01 1.33065e+00 6.56944e-05 1.01650e-02
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 17.0498 for poi fixed at = 3.67347 fit time : Real time
[#0] PROGRESS:Eval —-- OBSERVED DATA : gmu = 21.8992 condNLL = 17.0498 uncond 6.10022
[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest —— Find Dbest conditional NLL on ASIMOV data
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1
*hkkhkkkkkk kK

*% 379 xxSET PRINT 0

Kok kK Kk kK ok Kk
Kk Kk Kk k kK ok Kk
*% 380 **SET NOGRAD
Kok kK Kk kK ok Kk

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 1.89557e+01 1.33065e+00 0.00000e+00 2.00000e+02
* Kk ok ok Kk k ok kkk
% 381 xxSET ERR 0.5
Kk k kK k Kk kk Kk
* Kk ok ok Kk k ok k kK
%% 382 **SET PRINT 0

Kk k ok kK kkk kK

kk Kk Kk KkKk Kk kKK
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383 xxSET STR

*k Kk kK Kk kK kK

* *

Ak Kk kKkKk Kk kKK

384 xxMIGRAD

*kkhkkkkkk kK

MIGRAD MINIMIZATION HAS CONVERGED.

MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=21.3172 FROM MIGRAD STATUS=CONVERGED
EDM=9.14946e-07 STRATEGY=

500

* *

12 CALL
1

STEP
SIZE
7.27943e-0

EXT PARAMETER
NO. NAME
1

ERROR
1.33669e+00
ERR DEF= 0.5
AsymptoticCalculator::EvaluateNLL - value
[#0] PROGRESS:Eval ASIMOV data gqmu_A 30.6111 condN
[#0] PROGRESS:Eval -- poi 3.67347 gmu 21.8992 gmu_A
[#1] INFO:ObjectHandling —-- RooWorkspace::saveSnaphot (w)

VALUE

B 1.92295e+01

[#1]
[#0]
AsymptoticCalculator::EvaluateNLL

INFO:Eval —-- AsymptoticCalculator::GetHypoTest: - pe
PROGRESS:Eval —-- AsymptoticCalculator::GetHypoTest -
using Minuit / Mig
* ok Kk ok ok ok ok ok ok k

385 x*x*SET PRINT

Kk kK Kk kK Kk Kk kKK

* x

* ok Kk ok ok ok ok ok ok ok

386 *xSET NOGRAD

Kk kK Kk kK Kk Kk kKK

PARAMETER DEFINITIONS:

* *

21.3172 for poi fixed at

S 13 TOTAL
ERROR MATRIX ACCURATE
FIRST
DERIVATIVE

5 -4.21870e-02

3.67347 fit time

LL 21.3172 uncond 6.01169
30.6111 sigma 0.663953 CLsplusb 1.436°

replacing previous snapshot with name Model(

Real time

rform an hypothesis test for POI ( mu )
Find Dbest conditional NLL on OBSERVED dat
rad with strategy 1 and tolerance 1

NO. NAME VALUE STEP SIZE LIMITS
1B 2.00000e+01 1.41405e+00 0.00000e+00 2.00000e+02

* ok Kk ok ok k kK ok ok

*%x 387 **SET ERR 0.5

*kkkkkkkkk*k

* ok Kk ok ok k kK k ok

*%x 388 %%xSET PRINT 0

*kkkkkkkhkkk*k

* ok Kk ok ok k ok Kk k ok

*x 389 xxSET STR 1

*kkkkkkkhkkk*k

* ok Kk ok ok k ok Kk k ok

*x 390 **MIGRAD 500 1

*kkhkkhkkkkkkk*k

MIGRAD MINIMIZATION HAS CONVERGED.

MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=17.7305 FROM MIGRAD STATUS=CONVERGED 15 CALLS 16 TOTAL

EDM=5.91234e-08 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.89386e+01 1.32987e+00 6.69431e-05 1.07059e-02
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 17.7305 for poi fixed at = 3.79592 fit time Real time

[#0] OBSERVED DATA 23.2606
[#0]

AsymptoticCalculator::EvaluateNLL
* k ok ok kk ok ok kk

391 xxSET PRINT

Kk ok Kk ok ok kokkkk

PROGRESS:Eval

qmu

* x

* ok kkkk kK kK

392 xxSET NOGRAD

* x

condNLL 17.7305 uncond 6.10022

PROGRESS:Eval —-- AsymptoticCalculator::GetHypoTest ——- Find Dbest conditional NLL on ASIMOV data
using Minuit / Migrad with strategy

1 and tolerance 1
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* ok Kk ok ok ok ok ok ok ok

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 1.89386e+01 1.32987e+00 0.00000e+00 2.00000e+02
Kk ok hkkk Kk k kK
% 393 *xSET ERR 0.5

* ok ok ok ok ok ok k ok x

* ok ok ok k ok kkkk

% 394 %xSET PRINT 0

* ok Kk ok ok kkok ok ok

* ok ok ok ok kkkkk

*x 395 xxSET STR 1

* ok ok ok ok ok ok ok ok k

* ok ok ok kkkkkk

**x 396 x*MIGRAD 500 1

* ok Kk ok ok ok ok ok kx

MIGRAD MINIMIZATION HAS CONVERGED.

MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=22.099 FROM MIGRAD STATUS=CONVERGED 12 CALLS 13 TOTAL

EDM=9.60535e-07 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.92155e+01 1.33605e+00 7.40717e-05 -4.32317e-02
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 22.099 for poi fixed at = 3.79592 fit time : Real time
[#0] PROGRESS:Eval —-— ASIMOV data gmu_A = 32.1747 condNLL = 22.099 uncond 6.01169
[#0] PROGRESS:Eval -- poi = 3.79592 gmu = 23.2606 gqmu_A = 32.1747 sigma = 0.669206 CLsplusb = 7.073
[#1] INFO:ObjectHandling —- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(

[#1] INFO:Eval -- AsymptoticCalculator::GetHypoTest: - perform an hypothesis test for POI ( mu ) =
[#0] PROGRESS:Eval —-- AsymptoticCalculator::GetHypoTest - Find Dbest conditional NLL on OBSERVED dat
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1
*kkhkkhkkkkkhkkkk

*x 397 *xSET PRINT 0

*hkkkkkkk kK

*kkkhkkkkkhkkk*k

* % 398 **SET NOGRAD

*kkkkkkk kK

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 2.00000e+01 1.41405e+00 0.00000e+00 2.00000e+02
* Kk ok ok ok k ok ok kk
% 399 xxSET ERR 0.5
* Kk ok kkk Kk k kK
* Kk ok ok ok kkokkk
%% 400 **SET PRINT 0
* Kk ok kkk Kk k kK
* Kk ok kkkkkkk
% 401 *xSET STR 1
* Kk ok ok Kk k Kk kkk
* Kk ok ok kkkkkk
* % 402 *+*MIGRAD 500 1

Hok kK ok kK ok ok
MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=18.4226 FROM MIGRAD STATUS=CONVERGED 15 CALLS 16 TOTAL
EDM=6.51767e-08 STRATEGY= 1 ERROR MATRIX ACCURATE

EXT PARAMETER STEP FIRST

NO. NAME VALUE ERROR SIZE DERIVATIVE
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1 B 1.89223e+01 1.32911e+00 6.81886e-05 1.12426e-02
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 18.4226 for poi fixed at = 3.91837 fit time : Real time
[#0] PROGRESS:Eval —--— OBSERVED DATA : gmu = 24.6448 condNLL = 18.4226 uncond 6.10022

[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest —-- Find Dbest conditional NLL on ASIMOV data
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

LR I S S S i

*% 403 **SET PRINT 0

*ok Kk ok k kK ok Kk
Kok kK Kok kK ok Kk
*% 404 xxSET NOGRAD
Kok k ok ok k kK ok Kk

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 1.89223e+01 1.32911e+00 0.00000e+00 2.00000e+02
*ok kK Kok ok Kk ok
*%x 405 **SET ERR 0.5

*kkhkkkkkkkk

khk Kk kK KK KKK

*%x 406 **SET PRINT 0

*kkhkkhkkkkkkk*k

kk kKR kKK KKK

% 407 *xSET STR 1

*kkhkkkkkkkk*k

Kk k Kk kKKK KKK

*% 408 *+*MIGRAD 500 1

*kkhkkkkkkkk*k

MIGRAD MINIMIZATION HAS CONVERGED.

MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=22.8901 FROM MIGRAD STATUS=CONVERGED 12 CALLS 13 TOTAL

EDM=1.00574e-06 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.92021e+01 1.33544e+00 7.53415e-05 -4.42439e-02
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 22.8901 for poi fixed at = 3.91837 fit time : Real time
[#0] PROGRESS:Eval —-— ASIMOV data gmu_A = 33.7568 condNLL = 22.8901 uncond 6.01169

[#0] PROGRESS:Eval -- poi = 3.91837 gmu = 24.6448 gmu_A = 33.7568 sigma = 0.674411 CLsplusb = 3.446!
[#1] INFO:0ObjectHandling —- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(

[#1] INFO:Eval —-- AsymptoticCalculator::GetHypoTest: — perform an hypothesis test for POI ( mu ) =
[#0] PROGRESS:Eval -—- AsymptoticCalculator::GetHypoTest - Find Dbest conditional NLL on OBSERVED daf
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1
*hkkhkkkkkkkk

% 409 *xSET PRINT 0

* k ok ok kk ok ok kk

*hkkhkkkkkkkk

*% 410 x»xSET NOGRAD

* ok ok ok ok ok ok ok kK

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 2.00000e+01 1.41405e+00 0.00000e+00 2.00000e+02
* Kk ok ok kk Kk kkk
% 411 xxSET ERR 0.5
Kk ok kkk Kk kk Kk
* Kk ok kkk ok ok ok ok
%% 412 **SET PRINT 0

* Kk k kK k kK kK

*kkkkKkKk kKKK
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*%x 413 %%xSET STR 1

Kk ko kK Kk ok x

Kk ok kK kK kK x

*% 414 **MIGRAD 500 1

Kk ko kK ok ok ok x

MIGRAD MINIMIZATION HAS CONVERGED.

MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=19.1257 FROM MIGRAD STATUS=CONVERGED 15 CALLS 16 TOTAL
EDM=7.14677e-08 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.89066e+01 1.32837e+00 6.94304e-05 1.17749e-02
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 19.1257 for poi fixed at = 4.04082 fit time : Real time
[#0] PROGRESS:Eval —-— OBSERVED DATA : gmu = 26.0509 condNLL = 19.1257 uncond 6.10022

[#0] PROGRESS:Eval —-- AsymptoticCalculator::GetHypoTest —-—- Find Dbest conditional NLL on ASIMOV data
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

*khkkkkkkkk*k

% 415 x*SET PRINT 0

Kok kK Kk kK ok Kk
Kok kK Kk ok kK ok Kk
*x 416 **SET NOGRAD
Kk kK Kk kK ok Kk

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 1.89066e+01 1.32837e+00 0.00000e+00 2.00000e+02
Kk ok ok ok ok ok ok ok ok
* % 417 *+xSET ERR 0.5
Kok ok k ok ok ok ok ok
Kk ok okkok ok ok ok K
* % 418 *xSET PRINT 0
Kk ok k ok ok ok ok ok
Kk ok ok ok ok ok ok ok ok
* % 419 *xSET STR 1
Kk ok ok k ok ok ok ok
Kk ok ok ok ok ok ok ok ok
*% 420 **MIGRAD 500 1

*hkkhkkkkkkkk
MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.
FCN=23.6901 FROM MIGRAD STATUS=CONVERGED 12 CALLS 13 TOTAL
EDM=1.05058e-06 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.91892e+01 1.33484e+00 7.66037e-05 -4.52261e-02
ERR DEF= 0.5
AsymptoticCalculator::EvaluateNLL - value = 23.6901 for poi fixed at = 4.04082 fit time : Real time
[#0] PROGRESS:Eval —- ASIMOV data gmu_A = 35.3568 condNLL = 23.6901 uncond 6.01169
[#0] PROGRESS:Eval -- poi = 4.04082 gmu = 26.0509 gmu_A = 35.3568 sigma = 0.679568 CLsplusb = 1.662¢
[#1] INFO:ObjectHandling —-- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(

[#1] INFO:Eval —-- AsymptoticCalculator::GetHypoTest: - perform an hypothesis test for POI ( mu ) =
[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest - Find Dbest conditional NLL on OBSERVED dat
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

* k ok ok kk ok ok kk

%% 421 *xSET PRINT 0

*kkkkkkkkk*k

* k ok ok kkk ok kk

*% 422 *xSET NOGRAD
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* ok Kk ok ok ok ok ok ok ok

PARAMETER DEFINITIONS:

NO. NAME VALUE
1B 2.00000e+01
Kk ok hkkk Kk k kK
% 423 *xSET ERR 0.5

* ok ok ok ok ok ok k ok x

Kk hkhkkkkk kK

* % 424 *+xSET PRINT 0

* ok Kk ok ok kkok ok ok

Kk ok hkkkkk kK

*x 425 **SET STR 1

* ok ok ok ok ok ok ok ok k

Kk hkkkk Kk ok kK

*% 426 **MIGRAD

* ok Kk ok ok ok ok ok kx

MIGRAD MINIMIZATION HAS CONVERGED.

MIGRAD WILL VERIFY CONVERGENCE AND E

FCN=19.8392 FROM MIGRAD
EDM=7.7984e-08

500

EXT PARAMETER

NO. NAME VALUE ER
1 B 1.88916e+01 1.32
ERR DE

AsymptoticCalculator: :EvaluateNLL -
[#0] PROGRESS:Eval -- OBSERVED DATA
[#0]
AsymptoticCalculator::EvaluateNLL
*kkkkkkk kK

*% 427 *xSET PRINT 0

* ok ok ok ok k kK kk

* kk ok kkkkkk

*% 428 *xSET NOGRAD

* ok Kk ok ok k kK kk

PARAMETER DEFINITIONS:

NO. NAME VALUE STE
1B 1.88916e+01 1.32
* Kk ok kkk Kk k kK
% 429 xxSET ERR 0.5

* h ok ok kk ok ok kk

* Kk ok kkkkk kK

* % 430 *+xSET PRINT 0
* hk ok kk ok ok kk

* Kk ok kkk Kk k kK

*x 431 **SET STR 1
Kk ok kK k Kk kkKk

* Kk ok kK k ok kkk

*% 432 xxMIGRAD
Kk Kk kK k Kk kk Kk

MIGRAD MINIMIZATION HAS CONVERGED.

500

STEP SIZE
1.41405e+00

STATUS=CONVERGED

LIMITS

0.00000e+00 2.00000e+02

RROR MATRIX.
15 CALLS
STRATEGY= 1

STEP FIRST
ROR SIZE DERIVATIVE
766e+00 7.06678e-05 1.23022e-02
F= 0.5

19.8392 for poi fixed at =
27.478 condNLL =

value =
gmu =

using Minuit / Migrad with strategy

LIMITS
0.00000e+00

P SIZE

766e+00 2.00000e+02

MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=24.4986 FROM MIGRAD
EDM=1.09503e-06

STATUS=CONVERGED

12 CALLS
STRATEGY= 1

EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.91769e+01 1.33426e+00 7.7857%9e-05 -4.61797e-02
ERR DEF= 0.5
AsymptoticCalculator::EvaluateNLL - value = 24.4986 for poi fixed at =

[#0] PROGRESS:Eval —-

ASIMOV data gmu_A =

36.9738 condNLL =

16 TOTAL
ERROR MATRIX ACCURATE

13 TOTAL
ERROR MATRIX ACCURATE

4.16327 fit time
19.8392 uncond 6.10022
PROGRESS:Eval —-- AsymptoticCalculator::GetHypoTest —-- Find Dbest conditional NLL on ASIMOV data

Real time

1 and tolerance 1

4.16327 fit time
24.4986 uncond 6.01169
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[#0] PROGRESS:Eval -- poi = 4.16327 gmu = 27.478 gmu_A = 36.9738 sigma = 0.684679 CLsplusb = 7.9444
[#1] INFO:ObjectHandling —-- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(
[#1] INFO:Eval -- AsymptoticCalculator::GetHypoTest: - perform an hypothesis test for POI ( mu ) =
[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest - Find Dbest conditional NLL on OBSERVED dat
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

* ok ok ok ok ok ok ok ok x

%% 433 **SET PRINT 0
* Kk ok ok Kk k ok kkk

* ok Kk ok ok ok ok ok kx

*% 434 *xSET NOGRAD

* Kk ok ok ok k ok ok ok ok

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 2.00000e+01 1.41405e+00 0.00000e+00 2.00000e+02
* ok Kk ok ok ok ok ok ok k
% 435 *xSET ERR 0.5

*khkkhkkkkkkkk

Kk ok Kk kK Kk ok Kk

*% 436 xxSET PRINT 0
*kkhkkkkkkkkk

* Kk kK k kK kK Kk

* * 437 *«SET STR 1

*kkhkkkkkkhkkk*k

* Kk kK k kK Kk ok Kk

*x 438 *xxMIGRAD 500 1
*kkkkkkkkkk

MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=20.5629 FROM MIGRAD STATUS=CONVERGED 15 CALLS 16 TOTAL
EDM=8.47156e-08 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.88772e+01 1.32697e+00 7.19005e-05 1.28245e-02
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 20.5629 for poi fixed at = 4.28571 fit time : Real time
[#0] PROGRESS:Eval -- OBSERVED DATA : gmu = 28.9254 condNLL = 20.5629 uncond 6.10022
[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest —-- Find Dbest conditional NLL on ASIMOV data
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

* k ok ok kk ok ok kk

% 439 *xSET PRINT 0
* Kk ok ok ok kkkkk

* k ok ok kk ok ok kk

*% 440 *xSET NOGRAD

* Kk ok ok ok kkkkk

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 1.88772e+01 1.32697e+00 0.00000e+00 2.00000e+02
Kk ok hkkk Kk kkKk
% 441 *xSET ERR 0.5
* Kk ok kkkkk ok ok
Kk k kK k Kk kkKk
%% 442 *xSET PRINT 0
* Kk ok kK kkok ok ok
Kk ok kK k Kk kk Kk
% 443 *xSET STR 1
* Kk ok ok kkkk ok ok
Kk k kK k Kk kkk
**x 444 xxMIGRAD 500 1
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* ok ok ok ok ok ok ok ok ok

MIGRAD MINIMIZATION HAS CONVERGED.

MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=25.3153 FROM MIGRAD STATUS=CONVERGED 12 CALLS 13 TOTAL

EDM=1.13905e-06 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.91650e+01 1.33370e+00 7.91043e-05 -4.71056e-02
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 25.3153 for poi fixed at = 4.28571 fit time : Real time
[#0] PROGRESS:Eval —-— ASIMOV data gmu_A = 38.6073 condNLL = 25.3153 uncond 6.01169
[#0] PROGRESS:Eval -- poi = 4.28571 gmu = 28.9254 gmu_A = 38.6073 sigma = 0.689745 CLsplusb = 3.760
[#1] INFO:ObjectHandling —-- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(

[#1] INFO:Eval -- AsymptoticCalculator::GetHypoTest: - perform an hypothesis test for POI ( mu ) =
[#0] PROGRESS:Eval —-- AsymptoticCalculator::GetHypoTest - Find Dbest conditional NLL on OBSERVED dat
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1
*kkhkkkkkkkk*k

*x 445 %xxSET PRINT 0

* ok ok ok kkkk kK

*kkhkkhkkkkkkk*k

*x 446 x+xSET NOGRAD

* k ok ok kkkk kK

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 2.00000e+01 1.41405e+00 0.00000e+00 2.00000e+02
Kk ok kK kK kK X
*% 447 xxSET ERR 0.5
Kk ok kK Kk kK ok
Kk ok kK Kk Kk kK x
%% 448 **SET PRINT 0
Kk kK Kk kK x
Kk ok ok Kk Kk kK Kk
% 449 xxSET STR 1
Kk kK ok Kk Kk
Kk ok ok Kk kK kK x
%% 450 **MIGRAD 500 1

Hok kK ok kK ok ok
MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=21.2963 FROM MIGRAD STATUS=CONVERGED 15 CALLS 16 TOTAL
EDM=9.16544e-08 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.88633e+01 1.32630e+00 7.31280e-05 1.33417e-02
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 21.2963 for poi fixed at = 4.40816 fit time : Real time
[#0] PROGRESS:Eval —-— OBSERVED DATA : gmu = 30.3922 condNLL = 21.2963 uncond 6.10022
[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest —-- Find Dbest conditional NLL on ASIMOV data
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1
*kkhkkkkkkkk*k

*x 451 %xxSET PRINT 0

Kk ok kK kK kK x
Kk ok ok Kk kK kK x
*% 452 xxSET NOGRAD
Kk ok kK kK kK k
PARAMETER DEFINITIONS:
NO. NAME VALUE STEP SIZE LIMITS
1B 1.88633e+01 1.32630e+00 0.00000e+00 2.00000e+02
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* ok Kk ok ok ok ok ok ok ok

* x

453 *xSET ERR 0.5

Ak Kk kKkKk Kk kKK

* ok ok ok ok ok ok ok ok ok

* x

454 xxSET PRINT 0

Kk Kk KkKkKk kKKK

* ok Kk ok ok ok ok kK ok

* x

455 x*xSET STR 1

kK KkkKkKk kKKK

* ok Kk ok ok ok ok ok ok ok

* x

456 xx*MIGRAD 500 1

kk Kk kK Kk kKKK
MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=26.14 FROM MIGRAD STATUS=CONVERGED 12 CALLS 13 TOTAL
EDM=1.18265e-06 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.91537e+01 1.33316e+00 8.03426e-05 -4.80054e-02
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 26.14 for poi fixed at = 4.40816 fit time : Real time
[#0] PROGRESS:Eval —-— ASIMOV data gqmu_A = 40.2566 condNLL = 26.14 uncond 6.01169
[#0] PROGRESS:Eval -- poi = 4.40816 gmu = 30.3922 gmu_A = 40.2566 sigma = 0.694767 CLsplusb = 1.764
[#1] INFO:0ObjectHandling —-- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(
[#1] INFO:Eval —-- AsymptoticCalculator::GetHypoTest: - perform an hypothesis test for POI ( mu ) =
[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest - Find Dbest conditional NLL on OBSERVED daf
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1
*kkkkkkk kK

*% 457 xxSET PRINT 0

* ok Kk ok ok ok ok ok ok x

*kkkhkkkk kKKK

* K

458 *+xSET NOGRAD

* ok ok ok ok ok ok ok ok ok

PARAMETER DEFINITIONS:

Ak Kk kK Kk kKKK

* K

NO. NAME VALUE STEP SIZE LIMITS
1B 2.00000e+01 1.41405e+00 0.00000e+00 2.00000e+02
459 xxSET ERR 0.5

* ok kokkk ok Kk k ok

Kk Kk kK Kk Kk kKK

* K

460 »*SET PRINT 0

* Kk kokkk ok Kk kk

Kk Kk kK Kk Kk kKK

* K

461 xxSET STR 1

* Kk k ok ok k ok Kk k ok

Ak Kk hkKkk Kk kKK

* K

462 x»x*MIGRAD 500 1

*ok kK Kk kK ok ok
MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=22.0391 FROM MIGRAD STATUS=CONVERGED 15 CALLS 16 TOTAL
EDM=9.87947e-08 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.88500e+01 1.32565e+00 7.43501e-05 1.38540e-02
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 22.0391 for poi fixed at = 4.53061 fit time : Real time
[#0] PROGRESS:Eval —-— OBSERVED DATA : gmu = 31.8778 condNLL = 22.0391 uncond 6.10022
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[#0] PROGRESS:Eval -—- AsymptoticCalculator::GetHypoTest —— Find best conditional NLL on ASIMOV data
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1
*khkkhkkkkkhkkk*k
*% 463 *%xSET PRINT 0

Kok kK Kk kK ok Kk
Kk kK Kk kK ok Kk
*% 464 *xxSET NOGRAD
Kk kK Kk kK kK

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 1.88500e+01 1.32565e+00 0.00000e+00 2.00000e+02
Kk ok kK kK kK x
*%x 465 *x%xSET ERR 0.5
Kk Kk kK ok kK k
Kk ok kK kK kK x
*% 466 **SET PRINT 0
Kk kK Kk kK x
Kk ok ok Kk kK kK x
% 467 *xSET STR 1
Kk kK kK kK k
Kk ok ok Kk kK kK x
%% 468 **MIGRAD 500 1

* k ok ok kkkkkk
MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.
FCN=26.9722 FROM MIGRAD STATUS=CONVERGED 12 CALLS 13 TOTAL
EDM=1.22585e-06 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.91427e+01 1.33263e+00 8.15729e-05 -4.88810e-02
ERR DEF= 0.5
AsymptoticCalculator::EvaluateNLL - value = 26.9722 for poi fixed at = 4.53061 fit time : Real time
[#0] PROGRESS:Eval —- ASIMOV data gmu_A = 41.921 condNLL = 26.9722 uncond 6.01169
[#0] PROGRESS:Eval -- poi = 4.53061 gmu = 31.8778 gmu_A = 41.921 sigma = 0.699747 CLsplusb = 8.2093:
[#1] INFO:ObjectHandling —-- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(

[#1] INFO:Eval —-- AsymptoticCalculator::GetHypoTest: - perform an hypothesis test for POI ( mu ) =
[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest - Find Dbest conditional NLL on OBSERVED datf
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

* ok Kk ok ok k ok Kk k ok

*% 469 xxSET PRINT 0

*kkkhkkkkkkkk

* h ok ok kk ok ok kk

*% 470 x»xSET NOGRAD

*kkkkkkkkk*k

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 2.00000e+01 1.41405e+00 0.00000e+00 2.00000e+02
Kk hk kK k Kk kk Kk
% 471 *xSET ERR 0.5
* Kk ok ok kkkkkk
Kk ok kK kkk kK
% 472 *xSET PRINT 0
* Kk ok ok ok kkokkk
Kk khkk ok Kk kk Kk
% 473 *xSET STR 1
* Kk ok ok ok kkk kK
Kk khkkk Kk kk Kk
**x 474 xx*xMIGRAD 500 1
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Kok kK Kok ok Kk ok
MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=22.7909 FROM MIGRAD STATUS=CONVERGED 15 CALLS 16 TOTAL
EDM=1.06136e-07 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.88372e+01 1.32503e+00 7.55665e-05 1.43619e-02
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 22.7909 for poi fixed at = 4.65306 fit time : Real time
[#0] PROGRESS:Eval -- OBSERVED DATA : gmu = 33.3813 condNLL = 22.7909 uncond 6.10022
[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest —-—- Find Dbest conditional NLL on ASIMOV data
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

* ok ok ok ok kkkkk

% 475 *xSET PRINT 0

Kk ok ok kK Kk kK x
Kk kK Kk kK x
*% 476 xxSET NOGRAD
Kk ok ok Kk Kk Kk kK ok

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 1.88372e+01 1.32503e+00 0.00000e+00 2.00000e+02
Kk hkhkkkkk kK
% 477 *xSET ERR 0.5

* ok Kk ok ok ok ok ok ok ok

* ok ok ok kkkkkk

* % 478 xxSET PRINT 0

* ok Kk ok ok k ok ok ok ok

* ok ok ok kkkkkk

% 479 xxSET STR 1

* ok Kk ok ok k kK kk

* ok ok ok kkkk kK

**x 480 x*MIGRAD 500 1

* ok Kk ok ok k ok ok kk

MIGRAD MINIMIZATION HAS CONVERGED.

MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=27.8117 FROM MIGRAD STATUS=CONVERGED 12 CALLS 13 TOTAL

EDM=1.26869%9e-06 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.91322e+01 1.33213e+00 8.27952e-05 -4.97345e-02
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 27.8117 for poi fixed at = 4.65306 fit time : Real time
[#0] PROGRESS:Eval —-— ASIMOV data gmu_A = 43.6001 condNLL = 27.8117 uncond 6.01169
[#0] PROGRESS:Eval -- poi = 4.65306 gmu = 33.3813 gqmu_A = 43.6001 sigma = 0.704685 CLsplusb = 3.787
[#1] INFO:ObjectHandling —-- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(

[#1] INFO:Eval -- AsymptoticCalculator::GetHypoTest: - perform an hypothesis test for POI ( mu ) =
[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest - Find Dbest conditional NLL on OBSERVED dat
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1
*kkkkkkkkk*k

*% 481 xxSET PRINT 0

*hkkhkkkkkk kK

*kkkkkkkk*k

*% 482 xxSET NOGRAD

*hkkhkkkkkk kK

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 2.00000e+01 1.41405e+00 0.00000e+00 2.00000e+02
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* ok ok ok ok ok ok ok ok ok

% 483 *xSET ERR 0.5

* Kk ok ok ok kkkkk

* ok ok ok ok ok ok ok ok x

* % 484 *+xSET PRINT 0

* Kk ok ok ok k ok ok ok ok

* ok ok ok ok ok ok ok ok k

*% 485 xxSET STR 1

* Kk ok ok ok k ok k ok ok

* ok Kk ok ok ok ok ok ok ok

* % 486 *+xMIGRAD 500 1
* Kk ok ok ok k ok ok kk

MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=23.5513 FROM MIGRAD STATUS=CONVERGED 15 CALLS 16 TOTAL
EDM=1.13683e-07 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.88249e+01 1.32442e+00 7.67771e-05 1.48661e-02
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 23.5513 for poi fixed at = 4.77551 fit time : Real time
[#0] PROGRESS:Eval —-- OBSERVED DATA : gmu = 34.9021 condNLL = 23.5513 uncond 6.10022
[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest —-- Find Dbest conditional NLL on ASIMOV data
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

Kk kKkKhk Kk KKKk K

*% 487 %%xSET PRINT 0

Kok k ok ok ok kK ok Kk
*ok kK Kk kK ok ok
*%x 488 %xSET NOGRAD
Kok k ok Kk k kK ok Kk

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 1.88249%9e+01 1.32442e+00 0.00000e+00 2.00000e+02
Kk ok ko k ok ok ok ok
% 489 xxSET ERR 0.5

* Kk ok ok Kk kkk ok ok

* k ok ok kk ok ok k Kk

% 490 *x*SET PRINT 0

* Kk ok ok ok kkkkk

* k ok ok kk ok ok kk

*% 491 x+xSET STR 1

* Kk ok ok ok kkkkk

* k ok ok ok k ok ok kk

**x 492 xxMIGRAD 500 1
* Kk ok ok kkkk kK

MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=28.6583 FROM MIGRAD STATUS=CONVERGED 12 CALLS 13 TOTAL
EDM=1.31126e-06 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.91221e+01 1.33165e+00 8.40096e-05 -5.05684e-02
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 28.6583 for poi fixed at = 4.77551 fit time : Real time
[#0] PROGRESS:Eval —-— ASIMOV data gmu_A = 45.2932 condNLL = 28.6583 uncond 6.01169
[#0] PROGRESS:Eval -- poi = 4.77551 gmu = 34.9021 gmu_A = 45.2932 sigma = 0.709583 CLsplusb = 1.733
[#1] INFO:0ObjectHandling —-- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(
[#1] INFO:Eval —-- AsymptoticCalculator::GetHypoTest: - perform an hypothesis test for POI ( mu ) =
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[#0]

AsymptoticCalculator: :EvaluateNLL
*khkkhkkkkkhkkk*k

493 xxSET PRINT

Kk Kk Kk kK Kk kK kK

* *

*kk Kk Kk KKk kKKK

494 xxSET NOGRAD

*k Kk kK Kk kK kK

PARAMETER DEFINITIONS:

* *

PROGRESS:Eval —-- AsymptoticCalculator::GetHypoTest -

Find Dbest conditional NLL on OBSERVED daf

using Minuit / Migrad with strategy 1 and tolerance 1

NO. NAME VALUE STEP SIZE LIMITS
1B 2.00000e+01 1.41405e+00 0.00000e+00 2.00000e+02
Kk ok kK kK kK x
*%x 495 %xxSET ERR 0.5
Kk Kk kK ok kK k
Kk ok kK kK kK x
*% 496 %%xSET PRINT 0
Kk kK Kk kK x
Kk ok ok Kk kK kK x
% 497 *xSET STR 1
Kk kK kK kK k
Kk ok ok Kk kK kK x
%% 498 **MIGRAD 500 1

Hok kK ok kK ok ok
MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND E
FCN=24.3201 FROM MIGRAD
EDM=1.21444e-07
EXT PARAMETER

NO. NAME VALUE ER
1 B 1.88131e+01 1.32
ERR DE

AsymptoticCalculator: :EvaluateNLL -

[#0] PROGRESS:Eval OBSERVED DATA
[#0] PROGRESS:Eval —-- AsymptoticCalcu
AsymptoticCalculator: :EvaluateNLL

Kok k ok Kk k kK ok Kk
499 xxSET PRINT

Ak Kk kK Kk kKKK

* *

Kk ok ok Kk Kk K x
500 »*SET NOGRAD

Kk Kk kK Kk kKKK

PARAMETER DEFINITIONS:

* *

NO. NAME VALUE STE
1B 1.88131e+01 1.32
* Kk ok ok kkkk ok ok
% 501 *+xSET ERR 0.5
* Kk ok kK kkk kK
* Kk ok ok ok kkkkk
% 502 **SET PRINT 0
* Kk ok kkkkk ok ok
* Kk ok ok ok kkkkk
% 503 »xSET STR 1
* Kk ok kkkkkk ok
* Kk ok ok ok kkok ok ok
*% 504 **MIGRAD 500

Kk Kk kK Kk Kk kKK
MIGRAD MINIMIZATION HAS CONVERGED.

MIGRAD WILL VERIFY CONVERGENCE AND E
FCN=29.5116 FROM MIGRAD

STATUS=CONVERGED

STATUS=CONVERGED

RROR MATRIX.

15 CALLS 16 TOTAL
STRATEGY= 1 ERROR MATRIX ACCURATE
STEP FIRST
ROR SIZE DERIVATIVE
385e+00 7.79818e-05 1.53676e-02
F= 0.5
value = 24.3201 for poi fixed at = 4.89796 fit time Real time
amu = 36.4397 condNLL = 24.3201 uncond 6.10022

lator::GetHypoTest —-- Find best conditional NLL on ASIMOV data

using Minuit / Migrad with strategy 1 and tolerance 1

P SIZE
385e+00

LIMITS

0.00000e+00 2.00000e+02

RROR MATRIX.

12 CALLS 13 TOTAL
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EDM=1.35365e-06 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.91124e+01 1.33119e+00 8.52162e-05 -5.13854e-02
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 29.5116 for poi fixed at = 4.89796 fit time : Real time
[#0] PROGRESS:Eval —--— ASIMOV data gmu_A = 46.9998 condNLL = 29.5116 uncond 6.01169
[#0] PROGRESS:Eval -- poi = 4.89796 gmu = 36.4397 gmu_A = 46.9998 sigma = 0.714442 CLsplusb = 7.873
[#1] INFO:0ObjectHandling —-- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(
[#1] INFO:Eval —-- AsymptoticCalculator::GetHypoTest: - perform an hypothesis test for POI ( mu ) =
[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest - Find Dbest conditional NLL on OBSERVED daf
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

* ok ok ok ok kkkkk

% 505 **SET PRINT 0

Kk ok ok kK Kk kK x
Kk kK Kk kK x
*% 506 x»*SET NOGRAD
Kk ok ok Kk Kk Kk kK ok

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 2.00000e+01 1.41405e+00 0.00000e+00 2.00000e+02
Kk hkhkkkkk kK
% 507 *xSET ERR 0.5

* ok Kk ok ok ok ok ok ok ok

Kk khkkkkk kK

% 508 *xSET PRINT 0

* ok Kk ok ok k ok ok ok ok

Kk ok kK kkk kK

% 509 xxSET STR 1

* ok Kk ok ok k kK kk

Kk khkkkkk kK

*x 510 **MIGRAD 500 1
* h ok ok kk kK kk

MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=25.0969 FROM MIGRAD STATUS=CONVERGED 15 CALLS 16 TOTAL
EDM=1.29434e-07 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.88017e+01 1.32330e+00 7.91807e-05 1.58673e-02
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 25.0969 for poi fixed at = 5.02041 fit time : Real time
[#0] PROGRESS:Eval -- OBSERVED DATA : gmu = 37.9933 condNLL = 25.0969 uncond 6.10022
[#0] PROGRESS:Eval —-—- AsymptoticCalculator::GetHypoTest —— Find Dbest conditional NLL on ASIMOV data
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1
*hkkhkkkkkk kK

*% 511 xxSET PRINT 0

Kok kK Kk kK ok Kk
Kk kK Kk kK ok Kk
*% 512 %x%xSET NOGRAD
Kok kK Kk kK ok Kk

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 1.88017e+01 1.32330e+00 0.00000e+00 2.00000e+02
* Kk ok kkk ok ok ok ok
% 513 xxSET ERR 0.5

Kk Kk kkkk kK kK

*kkkkKkk kKKK
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*% 514 xxSET PRINT 0

Kk ko kK Kk ok x

Kk ok kK kK kK x

*% 515 xxSET STR 1

Kk ko kK ok ok ok x

Kk ok kK kK kK x

*% 516 **MIGRAD 500 1

* ok ok ok kkkkkk
MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.
FCN=30.3714 FROM MIGRAD STATUS=CONVERGED 12 CALLS 13 TOTAL
EDM=1.39603e-06 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.91031e+01 1.33075e+00 8.64152e-05 -5.21892e-02
ERR DEF= 0.5
AsymptoticCalculator::EvaluateNLL - value = 30.3714 for poi fixed at = 5.02041 fit time : Real time
[#0] PROGRESS:Eval —-— ASIMOV data gmu_A = 48.7195 condNLL = 30.3714 uncond 6.01169
[#0] PROGRESS:Eval -- poi = 5.02041 gmu = 37.9933 gmu_A = 48.7195 sigma = 0.719263 CLsplusb = 3.549:
[#1] INFO:ObjectHandling —-- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(

[#1] INFO:Eval —-- AsymptoticCalculator::GetHypoTest: — perform an hypothesis test for POI ( mu ) =
[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest - Find Dbest conditional NLL on OBSERVED dat
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

* ok ok ok ok ok ok ok kk

x% 517 xxSET PRINT 0

*kkkkkkkkkk

* ok Kk ok ok k ok ok ok ok

*%x 518 %*SET NOGRAD

*kkkkkkkkkk

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 2.00000e+01 1.41405e+00 0.00000e+00 2.00000e+02
* ok ok ok kk ok ok k Kk
% 519 *xSET ERR 0.5

* Kk ok ok ok kkkkk

* h ok ok kk ok ok kk

% 520 **SET PRINT 0

* Kk ok ok ok k ok kkk

* h ok ok kk ok ok kk

*x 521 **SET STR 1

* Kk ok ok k ok ok k ok ok

* k ok ok kk ok ok kk

**x 522 x*MIGRAD 500 1
* Kk ok ok ok k ok k ok ok

MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=25.8814 FROM MIGRAD STATUS=CONVERGED 15 CALLS 16 TOTAL
EDM=1.37667e-07 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.87909e+01 1.32279e+00 8.03738e-05 1.63663e-02
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 25.8814 for poi fixed at = 5.14286 fit time : Real time
[#0] PROGRESS:Eval -- OBSERVED DATA : gmu = 39.5623 condNLL = 25.8814 uncond 6.10022
[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest —-- Find Dbest conditional NLL on ASIMOV data
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

* kk ok kkk ok kk

*% 523 xxSET PRINT 0
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* ok Kk ok ok ok ok ok ok ok

*k Kk kK k kK kK

* K

524 *+xSET NOGRAD

* ok Kk ok ok ok ok ok ok ok

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 1.87909e+01 1.32279e+00 0.00000e+00 2.00000e+02
*k Kk kK Kk kK kK
525 x*SET ERR 0.5

* K

* ok Kk ok ok ok ok k ok ox

Kk Kk Kk kK Kk kK kK

* K

526 **SET PRINT 0

* ok Kk ok ok ok ok ok ok ok

*kkhkkk Kk kK kK

* K

527 xxSET STR 1

* ok Kk ok ok ok ok ok ok ok

Kk Kk Kk kK Kk kK kK

* K

528 xx*MIGRAD 500 1

*ok kK Kok ok Kk ok
MIGRAD MINIMIZATION HAS CONVERGED.

MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=31.2375 FROM MIGRAD STATUS=CONVERGED 12 CALLS 13 TOTAL

EDM=1.43856e-06 STRATEGY= 1 ERROR MATRIX ACCURATE

EXT PARAMETER STEP FIRST

NO.
1

NAME VALUE ERROR SIZE DERIVATIVE
B 1.90942e+01 1.33035e+00 8.76071e-05 -5.29833e-02
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 31.2375 for poi fixed at = 5.14286 fit time : Real time

[#0]
[#0]
[#1]

[#1]
[#0]

PROGRESS:Eval —-— ASIMOV data gmu_A = 50.4516 condNLL = 31.2375 uncond 6.01169
PROGRESS:Eval —-- poi = 5.14286 gmu = 39.5623 gmu_A = 50.4516 sigma = 0.724047 CLsplusb = 1.588
INFO:0bjectHandling —- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(

INFO:Eval -- AsymptoticCalculator::GetHypoTest: - perform an hypothesis test for POI ( mu ) =
PROGRESS:Eval —-- AsymptoticCalculator::GetHypoTest - Find Dbest conditional NLL on OBSERVED daf

AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

Kk ok Kk kK Kk kKA KKk

* *

529 xxSET PRINT 0

Ak Kk kK Kk kKKK

Kk ok Kk kK Kk kKA Kk

* *

530 x**SET NOGRAD

Kk Kk kK Kk kKKK

PARAMETER DEFINITIONS:

* x

* x

* x

NO. NAME VALUE STEP SIZE LIMITS
1B 2.00000e+01 1.41405e+00 0.00000e+00 2.00000e+02
* Kk ok ok kkkk ok ok
531 *xSET ERR 0.5
* Kk ok kK kkk kK
* Kk ok ok ok kkkkk
532 **xSET PRINT 0
* Kk ok kkkkk ok ok
* Kk ok ok ok kkkkk
533 x**SET STR 1
* Kk ok kkkkkk ok
* Kk ok ok ok kkok ok ok
534 *+*MIGRAD 500 1

* x

Kk Kk kK Kk Kk kKK

MIGRAD MINIMIZATION HAS CONVERGED.

MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=26.6733 FROM MIGRAD STATUS=CONVERGED 15 CALLS 16 TOTAL
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EDM=1.46159e-07 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.87804e+01 1.32231e+00 8.15614e-05 1.68654e-02
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 26.6733 for poi fixed at = 5.26531 fit time : Real time
[#0] PROGRESS:Eval —--— OBSERVED DATA : gmu = 41.1462 condNLL = 26.6733 uncond 6.10022
[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest —-- Find Dbest conditional NLL on ASIMOV data
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

LR I S S S i

x% 535 xxSET PRINT 0

* Kk ok ok ok k ok ok kk
* ok Kk ok ok ok ok ok ok ok
*% 536 x»xSET NOGRAD
* Kk ok ok ok k ok k ok ok

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 1.87804e+01 1.32231e+00 0.00000e+00 2.00000e+02
* ok ok ok ok ok ok ok ok ok
% 537 *xSET ERR 0.5

*kkhkkhkkkkkhkkk*k

kk Kk kKK KKKk

*% 538 xxSET PRINT 0

*kkhkkkkkkkk

Kk k Kk kKKK KKK

*x 539 xxSET STR 1

*kkkkkkkkk*k

Kk k Kk Kk kKK KKK

*% 540 **MIGRAD 500 1

*kkkkkkkkKkk

MIGRAD MINIMIZATION HAS CONVERGED.

MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=32.1096 FROM MIGRAD STATUS=CONVERGED 12 CALLS 13 TOTAL

EDM=1.48148e-06 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.90856e+01 1.32998e+00 8.87920e-05 -5.37719e-02
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 32.1096 for poi fixed at = 5.26531 fit time : Real time
[#0] PROGRESS:Eval —-— ASIMOV data gmu_A = 52.1957 condNLL = 32.1096 uncond 6.01169

[#0] PROGRESS:Eval -- poi = 5.26531 gmu = 41.1462 gmu_A = 52.1957 sigma = 0.728796 CLsplusb = 7.063¢
[#1] INFO:0ObjectHandling —-- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(

[#1] INFO:Eval —-- AsymptoticCalculator::GetHypoTest: - perform an hypothesis test for POI ( mu ) =
[#0] PROGRESS:Eval -—- AsymptoticCalculator::GetHypoTest - Find Dbest conditional NLL on OBSERVED daf
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1
*hkkhkkkkkk kK

*% 541 xxSET PRINT 0

* k ok ok ok k ok ok kk

*hkkhkkkkkk kK

*% 542 xxSET NOGRAD

* k ok ok kk ok ok kk

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 2.00000e+01 1.41405e+00 0.00000e+00 2.00000e+02
* Kk ok ok Kk k Kk kkk
*%* 543 xxSET ERR 0.5

Kk k ok kK kkk kK

*kkKkkKkKk Kk kKK
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* *

544 xxSET PRINT 0

*k Kk kK Kk kK kK

Ak Kk kKkKk Kk kKK

* *

545 xxSET STR 1

*kkhkkkkkk kK

KKk Kk Kk KKk kKKK

* *

546 x*x*MIGRAD 500 1

*kkhkkkkkk kK
MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=27.4723 FROM MIGRAD STATUS=CONVERGED 15 CALLS 16 TOTAL
EDM=1.54914e-07 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.87705e+01 1.32188e+00 8.27437e-05 1.73647e-02
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 27.4723 for poi fixed at = 5.38776 fit time : Real time
[#0] PROGRESS:Eval —-— OBSERVED DATA : gmu = 42.7442 condNLL = 27.4723 uncond 6.10022
[#0] PROGRESS:Eval —-- AsymptoticCalculator::GetHypoTest —-- Find best conditional NLL on ASIMOV data
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1
*kkhkkhkkkkkkkk

*+% 547 x*SET PRINT 0

Kk Kk kK Kk kK kK

Kk kK Kk kK Kk Kk kK Kk

* *

548 xx*SET NOGRAD

Kk Kk kK Kk kKKK

PARAMETER DEFINITIONS:

kk Kk kK Kk Kk kKK

* *

Kk Kk kK Kk kK kK

* *

* x

NO. NAME VALUE STEP SIZE LIMITS
1B 1.87705e+01 1.32188e+00 0.00000e+00 2.00000e+02
549 xxSET ERR 0.5
Kk ok kK kK kK x
550 **xSET PRINT 0
Kk kK Kk Kk ok k
Kk ok ok kK kK x
551 xxSET STR 1
Kk kK Kk Kk Kk
Kk ok ok Kk kK kK x
552 x*xMIGRAD 500 1

* *

Hok kK ok kK ok ok
MIGRAD MINIMIZATION HAS CONVERGED.

MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=32.9873 FROM MIGRAD STATUS=CONVERGED 12 CALLS 13 TOTAL

EDM=1.52497e-06 STRATEGY= 1 ERROR MATRIX ACCURATE

EXT PARAMETER STEP FIRST

NO.

1

NAME VALUE ERROR SIZE DERIVATIVE
B 1.90776e+01 1.32966e+00 8.99705e-05 -5.45583e-02
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 32.9873 for poi fixed at = 5.38776 fit time : Real time

[#0]
[#0]
[#1]

[#1]
[#0]

PROGRESS:Eval —-— ASIMOV data gmu_A = 53.9512 condNLL = 32.9873 uncond 6.01169
PROGRESS:Eval —- poi = 5.38776 gqmu = 42.7442 gmu_A = 53.9512 sigma = 0.733512 CLsplusb = 3.119:
INFO:0bjectHandling —-—- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(

INFO:Eval —-- AsymptoticCalculator::GetHypoTest: - perform an hypothesis test for POI ( mu ) =
PROGRESS:Eval ——- AsymptoticCalculator::GetHypoTest - Find Dbest conditional NLL on OBSERVED daf

AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

Kk k ok kK k kK kK

* x

553 xxSET PRINT 0
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Kk ok ko ok ok ok ok ok

Kk kkkk Kk k kK

554 *+xSET NOGRAD

Kk ok ko ok ok ok Kk

PARAMETER DEFINITIONS:
NO. NAME

1B
Kk hkhkkkkk kK
555 x*xSET ERR 0.5

* ok Kk ok ok ok ok k ok ox

* K

VALUE

2.00000e+01 1.41

* K

Kk Kk Kk kK Kk kK kK

556 **SET PRINT 0

* ok Kk ok ok ok ok ok ok ok

* K

*kkhkkk Kk kK kK

557 xxSET STR 1

* ok Kk ok ok ok ok ok ok ok

* K

Kk ok kK Kk Kk k kK

558 *+xMIGRAD

Kk ok ok ok ok ok ok ok x

MIGRAD MINIMIZATION HAS CONVERGED.

MIGRAD WILL VERIFY CONVERGENCE AND E

FCN=28.2781 FROM MIGRAD
EDM=1.63919e-07

500

* K

STEP SIZE

STATUS=CONVERGED

LIMITS

405e+00 0.00000e+00 2.00000e+02

RROR MATRIX.
15 CALLS
STRATEGY= 1

16 TOTAL
ERROR MATRIX ACCURATE

EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.87610e+01 1.32150e+00 8.39211e-05 1.78634e-02
ERR DEF= 0.5
AsymptoticCalculator::EvaluateNLL - value = 28.2781 for poi fixed at = 5.5102 fit time Real time
[#0] PROGRESS:Eval —-— OBSERVED DATA amu = 44,3557 condNLL = 28.2781 uncond 6.10022
[#0] PROGRESS:Eval —-- AsymptoticCalculator::GetHypoTest —-—- Find Dbest conditional NLL on ASIMOV data

AsymptoticCalculator::EvaluateNLL
* kk ok kkkk kK
559 *xSET PRINT 0

* ok Kk ok ok ok ok ok ok ok

* K

Ak Kk kK Kk Kk kKK

560 **SET NOGRAD
Kk ok ko k ok ok ok x

PARAMETER DEFINITIONS:

* K

NO. NAME VALUE STE
1B 1.87610e+01 1.32
* Kk ok kkkk ok kK
% 561 xxSET ERR 0.5

Kok kK Kk kK ok Kk
Kk kK Kk Kk Kk
562 xxSET PRINT 0

* Kk Kk ok ok k ok Kk k ok

* K

Kk Kk hkKkk kKKK

563 *xSET STR 1

* Kk Kk ok ok k ok kkk

* K

* Kk ok kkk Kk kkk

564 xxMIGRAD

Kk k kK k Kk kkk

MIGRAD MINIMIZATION HAS CONVERGED.

MIGRAD WILL VERIFY CONVERGENCE AND E

FCN=33.8704 FROM MIGRAD
EDM=1.56924e-06

500

* K

STATUS=CONVERGED

using Minuit / Migrad with strategy

LIMITS
0.00000e+00

P SIZE

150e+00 2.00000e+02

RROR MATRIX.
12 CALLS
STRATEGY= 1

13 TOTAL
ERROR MATRIX ACCURATE

1 and tolerance 1

EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.90699e+01  1.32939e+00  9.11430e-05 -5.53458e-02
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ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 33.8704 for poi fixed at = 5.5102 fit time : Real time
[#0] PROGRESS:Eval —- ASIMOV data gmu_A = 55.7175 condNLL = 33.8704 uncond 6.01169

[#0] PROGRESS:Eval -- poi = 5.5102 gmu = 44.3557 gmu_A = 55.7175 sigma = 0.738196 CLsplusb = 1.3690!
[#1] INFO:ObjectHandling —-- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(
[#1] INFO:Eval —-- AsymptoticCalculator::GetHypoTest: - perform an hypothesis test for POI ( mu ) =
[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest - Find Dbest conditional NLL on OBSERVED dat
AsymptoticCalculator: :EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

* ok ok ok ok ok ok ok ok x

* * 565 *xSET PRINT 0
* Kk ok ok ok k ok ok kk

* ok ok ok ok ok ok ok ok ok

*% 566 x»xSET NOGRAD

* Kk ok ok ok k ok kkk

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 2.00000e+01 1.41405e+00 0.00000e+00 2.00000e+02
* ok Kk ok ok ok ok ok ok ok
% 567 *xSET ERR 0.5

* Kk ok k ok k ok ok kk

Kk ok ok kk kK ok

* 568 *xSET PRINT 0

* Kk ok ok ok k ok ok ok ok

Kk ok ko kk kK ok

*%x 569 %x%xSET STR 1

* Kk ok ok ok k ok k ok ok

Kk ok ko k ok ok ok x

*x 570 **MIGRAD 500 1
* Kk ok ok ok kkkkk

MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=29.0902 FROM MIGRAD STATUS=CONVERGED 15 CALLS 16 TOTAL
EDM=1.73137e-07 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.87522e+01 1.32118e+00 8.50938e-05 1.83593e-02
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 29.0902 for poi fixed at = 5.63265 fit time : Real time
[#0] PROGRESS:Eval -- OBSERVED DATA : gmu = 45.98 condNLL = 29.0902 uncond 6.10022
[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest —-- Find Dbest conditional NLL on ASIMOV data
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

* ok Kk ok ok k kK k ok

*%x 571 %%SET PRINT 0

* Kk ok ok kkkk ok ok
Kk ok kK k Kk kkk
% 572 *xSET NOGRAD
* Kk ok ok ok kkk ok ok

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 1.87522e+01 1.32118e+00 0.00000e+00 2.00000e+02

Kk ok kK kkkkk

% 573 *xSET ERR 0.5

* Kk kkkkkkkk

Kk ok kK k ok ok k Kk

% 574 *xSET PRINT 0

* Kk ok ok kkk ok kK

Kk Kk hkkk Kk k kK

*% 575 xxSET STR 1
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* ok ok ok ok ok ok ok ok ok
* ok ok ok ok kkkkk
**x 576 xx*xMIGRAD 500 1
* ok ok ok ok ok ok ok ok ok
MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.
FCN=34.7586 FROM MIGRAD STATUS=CONVERGED 12 CALLS 13 TOTAL
EDM=1.61447e-06 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.90628e+01 1.32918e+00 9.23100e-05 -5.61372e-02
ERR DEF= 0.5
AsymptoticCalculator::EvaluateNLL - value = 34.7586 for poi fixed at = 5.63265 fit time : Real time
[#0] PROGRESS:Eval —-— ASIMOV data gmu_A = 57.4939 condNLL = 34.7586 uncond 6.01169
[#0] PROGRESS:Eval -—- poi = 5.63265 gmu = 45.98 gmu_A = 57.4939 sigma = 0.742852 CLsplusb = 5.97346¢
[#1] INFO:ObjectHandling —- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(

[#1] INFO:Eval -- AsymptoticCalculator::GetHypoTest: - perform an hypothesis test for POI ( mu ) =
[#0] PROGRESS:Eval —-- AsymptoticCalculator::GetHypoTest - Find Dbest conditional NLL on OBSERVED dat
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1
*kkhkkkkkkhkkkk

*x 577 *xxSET PRINT 0

*k ok ok kkkkkk

*kkhkkkkkkhkkk*k

*% 578 x+xSET NOGRAD

* ok ok ok kkkk kK

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 2.00000e+01 1.41405e+00 0.00000e+00 2.00000e+02
* Kk ok ok kkkkk ok
** 579 xxSET ERR 0.5
Kk khkkkkk kK
* Kk ok ok ok k ok ok kk
* % 580 **xSET PRINT 0
* Kk ok kkk Kk k kK
* Kk ok ok ok k ok kkk
* * 581 *xSET STR 1
* Kk ok kkk Kk k kK
* Kk ok ok kkkk ok ok
*% 582 *+*MIGRAD 500 1

Hok kK k kK ok ok
MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=29.9083 FROM MIGRAD STATUS=CONVERGED 13 CALLS 14 TOTAL
EDM=1.82492e-07 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.87439e+01 1.32093e+00 8.62621e-05 1.88486e-02
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 29.9083 for poi fixed at = 5.7551 fit time : Real time
[#0] PROGRESS:Eval —- OBSERVED DATA : gmu = 47.6162 condNLL = 29.9083 uncond 6.10022
[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest —-- Find Dbest conditional NLL on ASIMOV data
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1
*kkkhkkkkkkk*k

*% 583 xxSET PRINT 0

Ak Kk hkKkKk kKKK
Kk ok Kk ok ok ok kkkk

*% 584 xxSET NOGRAD

Ak Kk kKkKk kKKK
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PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 1.87439%9e+01 1.32093e+00 0.00000e+00 2.00000e+02
* ok ok ok ok ok ok ok ok ok
% 585 *xSET ERR 0.5

Kk kK Kk kK ok Kk
*ok kK Kk kK ok Kk

*% 586 xxSET PRINT 0

Kok kK Kk kK ok Kk

*ok kK Kok kK ok Kk

*% 587 xxSET STR 1

Kk k ok Kk kK ok Kk

Kok kK Kok kK ok Kk

*% 588 xxMIGRAD 500 1

*ok kK Kk kK ok Kk

MIGRAD MINIMIZATION HAS CONVERGED.

MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=35.6515 FROM MIGRAD STATUS=CONVERGED 12 CALLS 13 TOTAL
EDM=1.6607e-06 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.90562e+01 1.32904e+00 9.34719e-05 -5.69325e-02
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 35.6515 for poi fixed at = 5.7551 fit time : Real time
[#0] PROGRESS:Eval —-— ASIMOV data gmu_A = 59.2797 condNLL = 35.6515 uncond 6.01169
[#0] PROGRESS:Eval -- poi = 5.7551 gmu = 47.6162 gmu_A = 59.2797 sigma = 0.747481 CLsplusb = 2.5918
[#1] INFO:ObjectHandling —-- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(
[#1] INFO:Eval —-- AsymptoticCalculator::GetHypoTest: - perform an hypothesis test for POI ( mu ) =
[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest - Find Dbest conditional NLL on OBSERVED daf
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1
*kkkkkkk kK

*% 589 xxSET PRINT 0

Kk ok kK Kk kK Kk
Kk kK kK kK k
*% 590 x*xSET NOGRAD
Kk ok kK Kk kK Kk

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 2.00000e+01 1.41405e+00 0.00000e+00 2.00000e+02
* Kk ok kK k Kk k kK
% 591 xxSET ERR 0.5

* ok Kk okkk ok Kk k ok

Ak Kk hkkKk kKKK

* % 592 *xSET PRINT 0

Kk k kK k Kk kkKk

* Kk ok kkk Kk kkk

*% 593 xxSET STR 1

Kk ok kK k Kk k Kk Kk

* Kk ok kkkkkkk

**x 594 xxMIGRAD 500 1

*ok kK Kok kK ok ok
MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=30.732 FROM MIGRAD STATUS=CONVERGED 13 CALLS 14 TOTAL
EDM=1.91872e-07 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.87362e+01 1.32076e+00 8.74265e-05 1.93260e-02
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ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 30.732 for poi fixed at = 5.87755 fit time : Real time
[#0] PROGRESS:Eval —- OBSERVED DATA : gmu = 49.2636 condNLL = 30.732 uncond 6.10022

[#0] PROGRESS:Eval -- AsymptoticCalculator::GetHypoTest —— Find best conditional NLL on ASIMOV data
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

kk Kk Kk KKk kKKK

* *

595 xxSET PRINT 0

*kkhkkkk kK kK

kK Kk kKR kKKK

* x

596 xxSET NOGRAD

*kkhkkkkkk kK

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS

1B 1.87362e+01 1.32076e+00 0.00000e+00 2.00000e+02

kk Kk kK Kk kKKK

* *

597 xxSET ERR 0.5

Kk Kk kK Kk kK kK

*k Kk kK Kk Kk kKK

* *

598 xxSET PRINT 0

Ak Kk kK Kk kK kK

Kk kk kK Kk kKKK

* *

599 xxSET STR 1

*kk Kk kK Kk kK kK

Kk ok Kk kK Kk kKK Kk

* *

600 **MIGRAD 500 1

Hok kK ok kK ok ok
MIGRAD MINIMIZATION HAS CONVERGED.

MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=36.5488 FROM MIGRAD STATUS=CONVERGED 12 CALLS 13 TOTAL

EDM=1.70796e-06 STRATEGY= 1 ERROR MATRIX ACCURATE

EXT PARAMETER STEP FIRST

NO.
1

NAME VALUE ERROR SIZE DERIVATIVE
B 1.90503e+01 1.32898e+00 9.46291e-05 -5.77315e-02
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 36.5488 for poi fixed at = 5.87755 fit time : Real time

[#0]
[#0]
[#1]

[#1]
[#0]

PROGRESS:Eval —- ASIMOV data gmu_A = 61.0741 condNLL = 36.5488 uncond 6.01169
PROGRESS:Eval —-- poi = 5.87755 gmu = 49.2636 gmu_A = 61.0741 sigma = 0.752086 CLsplusb = 1.118
INFO:0bjectHandling —-- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(

INFO:Eval —-- AsymptoticCalculator::GetHypoTest: - perform an hypothesis test for POI ( mu ) =
PROGRESS:Eval —- AsymptoticCalculator::GetHypoTest - Find Dbest conditional NLL on OBSERVED daf

AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

* ok Kk ok ok k ok Kk k ok

* *

601 **SET PRINT 0

Kk ok kkkkkkkk

* ok kokkk ok Kk k ok

* x

602 **SET NOGRAD

Kk ok Kk ok kkkkkk

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 2.00000e+01 1.41405e+00 0.00000e+00 2.00000e+02

* ok Kk kK k kK kK

* x

603 **SET ERR 0.5

Kk ok Kk kk Kk kKA kk

* ok k kK kkk kK

* *

604 x*SET PRINT 0

Kk ok Kk ok ok kkkk ok

Kk Kk ok kK k kK kK

* x

605 *xSET STR 1
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Kk ok ko ok ok ok ok ok

Kok ok kkkkkk

*x 606 *+*MIGRAD 500 1

Kk ok ko ok ok ok Kk

MIGRAD MINIMIZATION HAS CONVERGED.

MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=31.5609 FROM MIGRAD STATUS=CONVERGED 13 CALLS 14 TOTAL
EDM=2.01118e-07 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.87293e+01 1.32067e+00 8.85868e-05 1.97842e-02
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 31.5609 for poi fixed at = 6 fit time : Real time
[#0] PROGRESS:Eval -- OBSERVED DATA : gmu = 50.9213 condNLL = 31.5609 uncond 6.10022
[#0] PROGRESS:Eval —-- AsymptoticCalculator::GetHypoTest —-—- Find Dbest conditional NLL on ASIMOV data
AsymptoticCalculator::EvaluateNLL ... using Minuit / Migrad with strategy 1 and tolerance 1

* ok ok ok ok kkkkk

*% 607 xxSET PRINT 0

Kk ok ok Kk Kk Kk kK x
Kk Kk Kk kK kK k
*% 608 x»*SET NOGRAD
Kk ok kK kK kK x

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS
1B 1.87293e+01 1.32067e+00 0.00000e+00 2.00000e+02
Kk kkkk Kk k kK
% 609 *xSET ERR 0.5

* ok Kk ok ok k ok ok ok ok

Kk kkkk Kk k kK

% 610 **SET PRINT 0

* ok Kk ok ok k kK k ok

Kk khkkk Kk ok kK

% 611 *xSET STR 1

* ok Kk ok ok k ok ok kk

* Kk ok kkk Kk k kK

**x 612 x*MIGRAD 500 1
* ok Kk ok ok k ok Kk k ok

MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.

FCN=37.4498 FROM MIGRAD STATUS=CONVERGED 12 CALLS 13 TOTAL
EDM=1.75616e-06 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 B 1.90450e+01 1.32900e+00 9.57819e-05 -5.85323e-02
ERR DEF= 0.5

AsymptoticCalculator::EvaluateNLL - value = 37.4498 for poi fixed at = 6 fit time : Real time
[#0] PROGRESS:Eval —- ASIMOV data gmu_A = 62.8763 condNLL = 37.4498 uncond 6.01169

[#0] PROGRESS:Eval -— poi = 6 gmu = 50.9213 gmu_A = 62.8763 sigma = 0.756672 CLsplusb = 4.80728e-13

Print observed limit

no

In [13]: cout << 100xinverter.Confidencelevel () << "% upper limit : " << result->UpperLimit () << en
90% wupper limit : 1.28592

compute expected limit

In [14]: std::cout << "Expected upper limits, using the B (alternate) model : " << std::endl;
std::cout << " expected limit (median) " << result->GetExpectedUpperLimit (0) << std::endl;
std::cout << " expected limit (-1 sig) " << result->GetExpectedUpperLimit (-1) << std::endl;
std::cout << " expected limit (+1 sig) " << result->GetExpectedUpperLimit (1) << std::endl;
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std::cout << " expected limit (-2 sig) " << result->GetExpectedUpperLimit (-2) << std::endl;
std::cout << " expected limit (+2 sig) " << result->GetExpectedUpperLimit (2) << std::endl;

Expected upper limits, using the B (alternate) model
expected limit (median) 0.866976

expected limit (-1 sig) 0.590338
expected limit (+1 sig) 1.313

expected limit (-2 sig) 0.429087
expected limit (+2 sig) 1.92199

Use the visualization tool of the PLC to show how the interval was calculated

In [15]: RooStats::HypoTestInverterPlotx plot = new RooStats::HypoTestInverterPlot ("HTI_Result_Plot",
plot->Draw("CLb 2CL"); // plot also CLb and CLs+b
cl->Draw ()

Info in <TCanvas::MakeDefCanvas>: created default TCanvas with name cl

HypoTest Scan Result

—J— Observed CLs
----- # - Observed CLs+b
—§— Observed CLb
------- Expected CLs - Median
[ ExpectedCLs = 1o
[ ] ExpectedClst2¢a

p value

0.8

0.6

0.4

0.2

mu

CLs limit with MC toys

Open the ROOT file

In [1]: TFilex f = TFile::Open("model.root")

RooFit v3.60 —- Developed by Wouter Verkerke and David Kirkby
Copyright (C) 2000-2013 NIKHEF, University of California & Stanford University
All rights reserved, please read http://roofit.sourceforge.net/license.txt

Retrieve the workspace
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In [2]: RooWorkspacex w = (RooWorkspacex) f->Get ("w") ;
w->Print () ;

RooWorkspace (w) w contents

variables

p.d.f.s

RooProdPdf::model[ model_ SR * model CR ] = 0.00144134
RooPoisson: :model_CR[ x=Nobs_CR mean=Nexp_CR ] = 0.0281977
RooPoisson: :model_SR[ x=Nobs_SR mean=Nexp_ SR ] = 0.0511153
functions

RooFormulaVar: :Nexp_CR[ actualVars=(tau,B) formula="tauxB" ] = 200
RooFormulaVar: :Nexp_SR[ actualVars=(mu,S,B) formula="muxS+B" ] = 30

datasets

RooDataSet: :observed_data (Nobs_SR, Nobs_CR)

parameter snapshots

ModelConfig___snapshot = (mu=1)

named sets

ModelConfig_NuisParams: (B)
ModelConfig_Observables: (Nobs_SR,Nobs_CR)
ModelConfig_ POI: (mu)
ModelConfig___snapshot: (mu)

obs: (Nobs_SR, Nobs_CR)

generic objects

RooStats: :ModelConfig::ModelConfig

Retrieve the ModelConfig for the S+B hypothesis
Retrieve the ModelConfig and the observed data. Together these uniquely define the statistical problem

In [3]: RooAbsDatax data = w->data ("observed_data")
RooStats: :ModelConfigx sbModel = (RooStats::ModelConfigx) w->o0bj("ModelConfig")

Construct a ModelConfig for the B-only hypothesis

For a CLS-style limit calculation (hypothesis test inversion) we need an explicit specification of the background-only
hypothesis == another RooStats::ModelConfig that describe the B-only scenario

In [4]: RooStats::ModelConfig*x bModel = (RooStats::ModelConfig*) sbModel->Clone ("BonlyModel™)

Here we take a little shortcut from universality by assuming that the POI=0 scenario corresponds to the background-
only scenario
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Set value POI parameter to zero

In [5]: RooRealVarx poi = (RooRealVarx) DbModel->GetParametersOfInterest ()->first();
poi->setVal (0) ;

Configure bModel to encode current poi=0 scenario as its hypothesis
In [6]: bModel->SetSnapshot ( *poi );

NB: To make CLS-style hypothesis calculation macros truly universal workspace files should contain both ModelCon-
figs upfront

Construct an hypothesis p-value calculator

i.e the calculation of p(sbModel) and p(bModel) for the observed data

Instantiate hypothesis testing calculator assuming asymptotic distributions of the profile likelihood ratio (PLR) test
statistic. This calculator is much more time consuming than the asymptotic calculator but is also valid in the low
statistics regime.

In [7]: RooStats::FrequentistCalculator freqgCalc(xdata, =*bModel, +*sbModel);

The frequentist calculator is more general than the asymptotic calculator: it can calculate distributions for any test
statistic. So here we have to tell it that we want the profile likelihood ratio test statistic

In [8]: RooStats::ProfilelLikelihoodTestStat+ plr = new RooStats::ProfilelLikelihoodTestStat (xsbModel-:
Configure calculator for a limit (=one-sided interval)

In [9]: plr—->SetOneSided(true);

Specifically we have to tell the Toy MC sampler part of the calculator what the relevant test statistic is

In [10]: RooStats::ToyMCSamplerx toymcs = (RooStats::ToyMCSampler*) fregCalc.GetTestStatSampler();
toymcs->SetTestStatistic (plr);

If we use the frequentist calculator for counting experiments (instead of models of distributions) we should instruct
the sampler to generate one event for each toy. ( This is the case because we model counting experiments in RooFit as
a single observation in distribution of event counts. )

In [11]: if (!sbModel->GetPdf () ->canBeExtended()) {
toymcs—>SetNEventsPerToy (1) ;
}

Sample 1000 toys for SB and B hypothesis respectively to model their distributions (Here you can trade speed vs
accuracy)

In [12]: fregCalc.SetToys (1000,1000) ;

Construct an hypothesis test inverter

i.e. a tool that can calculate the POI value for which (in this case) CLS==p(sbModel)/(1 — p(Model)) takes a certain
value. This inversion requires a scan over possible values of .

In [13]: RooStats::HypoTestInverter inverter (freqgCalc);

[#1] INFO:InputArguments —-- HypoTestInverter -—--- Input models:
using as S+B (null) model : ModelConfig
using as B (alternate) model : BonlyModel

Statistical configuration of hypothesis test inverter

132 Chapter 4. Tools for Statistical Tests and Inference



RooStatsWorkbook Documentation

In [14]: inverter.SetConfidencelLevel (0.90);

inverter.UseCLs (true);
Technical configuration of hypothesis test inverter

In [15]: inverter.SetVerbose (false);

inverter.SetFixedScan(30,0.0,6.0); // set number of points , xmin and xmax

Perform calculation of limit

In [16]: RooStats::HypoTestInverterResult* result = inverter.GetInterval();
[#1] INFO:Eval -- HypoTestInverter::GetInterval - run a fixed scan
[#1] INFO:0ObjectHandling —- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(
=== Using the following for ModelConfig ===
Observables: RooArgSet:: = (Nobs_SR,Nobs_CR)
Parameters of Interest: RooArgSet:: = (mu)
Nuisance Parameters: RooArgSet:: = (B)
PDF': RooProdPdf: :model[ model_SR * model CR ] = 0.00125727
Snapshot:
1) 0x7£8391561690 RooRealVar:: mu = 0 L(-1 - 10) "mu"
=== Using the following for BonlyModel ===
Observables: RooArgSet:: = (Nobs_SR,Nobs_CR)
Parameters of Interest: RooArgSet:: = (mu)
Nuisance Parameters: RooArgSet:: = (B)
PDF': RooProdPdf: :model[ model_ SR * model CR ] = 0.00125727
Snapshot:
1) 0x7£8391561690 RooRealVar:: mu = 0 L(-1 - 10) "mu"
[#0] PROGRESS:Generation —-- Test Statistic on data: O
[#1] INFO:InputArguments —-- Profiling conditional MLEs for Null.
[#1] INFO:InputArguments —- Using a ToyMCSampler. Now configuring for Null.
[#0] PROGRESS:Generation —- generated toys: 500 / 1000
[#1] INFO:InputArguments —-- Profiling conditional MLEs for Alt.
[#1] INFO:InputArguments —- Using a ToyMCSampler. Now configuring for Alt.
[#0] PROGRESS:Generation —- generated toys: 500 / 1000
[#1] INFO:0bjectHandling —-- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(

=== Using the following for ModelConfig ===

Observables: RooArgSet:: = (Nobs_SR,Nobs_CR)
Parameters of Interest: RooArgSet:: = (mu)
Nuisance Parameters: RooArgSet:: (B)
PDF: RooProdPdf::model[ model_SR * model CR ] = 0.00186075
Snapshot:
1) 0x7£8391442ea0 RooRealVar:: mu = 0.206897 L(-1 - 10) "mu"
=== Using the following for BonlyModel ===
Observables: RooArgSet:: = (Nobs_SR,Nobs_CR)
Parameters of Interest: RooArgSet:: = (mu)
Nuisance Parameters: RooArgSet:: (B)
PDF: RooProdPdf: :model[ model_SR * model CR ] = 0.00186075
Snapshot:
1) 0x7£8391442ea0 RooRealVar:: mu = 0 L(-1 — 10) "mu"
[#0] PROGRESS:Generation —- Test Statistic on data: O
[#1] INFO:InputArguments —-- Profiling conditional MLEs for Null.
[#1] INFO:InputArguments —-- Using a ToyMCSampler. Now configuring for Null.
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[#0] PROGRESS:Generation generated toys: 500 / 1000
[#1] INFO:InputArguments Profiling conditional MLEs for Alt.
[#1] INFO:InputArguments Using a ToyMCSampler. Now configuring for Alt.
[#0] PROGRESS:Generation generated toys: 500 / 1000
[#1] INFO:ObjectHandling RooWorkspace: :saveSnaphot (w) replacing previous snapshot with name Model(
=== Using the following for ModelConfig ===
Observables: RooArgSet:: = (Nobs_SR,Nobs_CR)
Parameters of Interest: RooArgSet:: = (mu)
Nuisance Parameters: RooArgSet:: = (B)
PDF: RooProdPdf: :model[ model_SR * model CR ] = 0.00220851
Snapshot:
1) 0x7£839172¢c370 RooRealVar:: mu = 0.413793 L(-1 - 10) "mu"
=== Using the following for BonlyModel ===
Observables: RooArgSet:: = (Nobs_SR,Nobs_CR)
Parameters of Interest: RooArgSet:: = (mu)
Nuisance Parameters: RooArgSet:: = (B)
PDF: RooProdPdf: :model[ model_SR * model CR ] = 0.00220851
Snapshot:
1) 0x7£839172¢c370 RooRealVar:: mu = 0 L(-1 — 10) "mu"
[#0] PROGRESS:Generation ——- Test Statistic on data: O
[#1] INFO:InputArguments Profiling conditional MLEs for Null.
[#1] INFO:InputArguments Using a ToyMCSampler. Now configuring for Null.
[#0] PROGRESS:Generation generated toys: 500 / 1000
[#1] INFO:InputArguments Profiling conditional MLEs for Alt.
[#1] INFO:InputArguments Using a ToyMCSampler. Now configuring for Alt.
[#0] PROGRESS:Generation generated toys: 500 / 1000
[#1] INFO:ObjectHandling —- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(
=== Using the following for ModelConfig ===
Observables: RooArgSet:: (Nobs_SR, Nobs_CR)
Parameters of Interest: RooArgSet:: = (mu)
Nuisance Parameters: RooArgSet:: = (B)
PDF: RooProdPdf: :model[ model_SR * model CR ] = 0.00217996
Snapshot:
1) 0x7£839172bdf0 RooRealVar:: mu = 0.62069 L(-1 - 10) "mu"
=== Using the following for BonlyModel ===
Observables: RooArgSet:: (Nobs_SR, Nobs_CR)
Parameters of Interest: RooArgSet:: = (mu)
Nuisance Parameters: RooArgSet:: (B)
PDF: RooProdPdf: :model[ model_SR * model CR ] = 0.0021799%96
Snapshot:
1) 0x7£839172bdf0 RooRealVar:: mu = 0 L(-1 - 10) "mu"
[#0] PROGRESS:Generation —- Test Statistic on data: 0.0262556
[#1] INFO:InputArguments Profiling conditional MLEs for Null.
[#1] INFO:InputArguments Using a ToyMCSampler. Now configuring for Null.
[#0] PROGRESS:Generation generated toys: 500 / 1000
[#1] INFO:InputArguments Profiling conditional MLEs for Alt.
[#1] INFO:InputArguments Using a ToyMCSampler. Now configuring for Alt.
[#0] PROGRESS:Generation generated toys: 500 / 1000
[#1] INFO:0bjectHandling RooWorkspace: :saveSnaphot (w) replacing previous snapshot with name Model(
=== Using the following for ModelConfig ===
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Observables: RooArgSet:: (Nobs_SR, Nobs_CR)
Parameters of Interest: RooArgSet:: = (mu)
Nuisance Parameters: RooArgSet:: = (B)
PDF: RooProdPdf: :model[ model_SR * model CR ] = 0.00184041
Snapshot:
1) 0x7£8391624430 RooRealVar:: mu = 0.827586 L(-1 - 10) "mu"
=== Using the following for BonlyModel ===
Observables: RooArgSet:: (Nobs_SR, Nobs_CR)
Parameters of Interest: RooArgSet:: = (mu)
Nuisance Parameters: RooArgSet:: = (B)
PDF: RooProdPdf: :model[ model_ SR * model CR ] = 0.00184041
Snapshot:
1) 0x7£8391624430 RooRealVar:: mu = 0 L(-1 - 10) "mu"
[#0] PROGRESS:Generation ——- Test Statistic on data: 0.184997
[#1] INFO:InputArguments —-- Profiling conditional MLEs for Null.
[#1] INFO:InputArguments —-- Using a ToyMCSampler. Now configuring for Null.

]
]
]
[#0] PROGRESS:Generation —-—
]
]
]
]

[#1] INFO:InputArguments —-- Profiling conditional MLEs for Alt.
[#1] INFO:InputArguments —-- Using a ToyMCSampler. Now configuring for Alt.
[#0] PROGRESS:Generation —-- generated toys: 500 / 1000
[#1] INFO:0ObjectHandling —-- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(
=== Using the following for ModelConfig ===
Observables: RooArgSet:: = (Nobs_SR,Nobs_CR)
Parameters of Interest: RooArgSet:: = (mu)
Nuisance Parameters: RooArgSet:: = (B)
PDF: RooProdPdf: :model[ model SR * model CR ] = 0.00135861
Snapshot:
1) 0x7£839172c370 RooRealVar:: mu = 1.03448 L(-1 - 10) "mu"
=== Using the following for BonlyModel ===
Observables: RooArgSet:: = (Nobs_SR,Nobs_CR)
Parameters of Interest: RooArgSet:: = (mu)
Nuisance Parameters: RooArgSet:: = (B)
PDF: RooProdPdf: :model[ model SR * model CR ] = 0.00135861
Snapshot:
1) 0x7£839172c370 RooRealVar:: mu = 0 L(-1 - 10) "mu"
[#0] PROGRESS:Generation ——- Test Statistic on data: 0.471936
[#1] INFO:InputArguments —-- Profiling conditional MLEs for Null.
[#1] INFO:InputArguments —- Using a ToyMCSampler. Now configuring for Null.
[#0] PROGRESS:Generation —-- generated toys: 500 / 1000
[#1] INFO:InputArguments —-- Profiling conditional MLEs for Alt.
[#1] INFO:InputArguments —-- Using a ToyMCSampler. Now configuring for Alt.
[#0] PROGRESS:Generation —- generated toys: 500 / 1000
[#1] INFO:ObjectHandling —-- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(
=== Using the following for ModelConfig ===
Observables: RooArgSet:: = (Nobs_SR,Nobs_CR)
Parameters of Interest: RooArgSet:: = (mu)
Nuisance Parameters: RooArgSet:: = (B)
PDF: RooProdPdf: :model[ model_SR * model_CR ] = 0.000892654
Snapshot:
1) 0x7£839172bdf0 RooRealVar:: mu = 1.24138 L(-1 - 10) "mu"

generated toys: 500 / 1000
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=== Using the following for BonlyModel ===
Observables:

Parameters of Interest:
Nuisance Parameters:

PDF:
Snapshot:

1)
[#0] PROGRESS:Generation —-—
[#1] INFO:InputArguments
[#1] INFO:InputArguments
[#0] PROGRESS:Generation
[#1] INFO:InputArguments
[#1] INFO:InputArguments
[#0] PROGRESS:Generation
[#1] INFO:ObjectHandling

0x7£839172bdf0 RooRealVar:: mu = 0 L(-1 - 10) "mu

RooArgSet:: = (Nobs_SR,Nobs_CR)
RooArgSet:: = (mu)
RooArgSet:: = (B)

RooProdPdf::model[ model_SR * model_CR ] = 0.000892654

Test Statistic on data: 0.871855
Profiling conditional MLEs for Null.
Using a ToyMCSampler. Now configuring for Null.

generated toys: 500 / 1000

Profiling conditional MLEs for Alt.
Using a ToyMCSampler. Now configuring for Alt.

generated toys: 500 / 1000
RooWorkspace: : saveSnaphot (w)

=== Using the following for ModelConfig ===

Observables: RooArgSet:: (Nobs_SR, Nobs_CR)
Parameters of Interest: RooArgSet:: = (mu)
Nuisance Parameters: RooArgSet:: = (B)
PDF:
Snapshot:
1) 0x7£8391624430 RooRealVar:: mu = 1.44828 L(-1 - 10)

=== Using the following for BonlyModel ===
Observables:

Parameters of Interest:
Nuisance Parameters:

PDF:
Snapshot:

1)
[#0] PROGRESS:Generation ——
[#1] INFO:InputArguments
[#1] INFO:InputArguments
[#0] PROGRESS:Generation
[#1] INFO:InputArguments
[#1] INFO:InputArguments
[#0] PROGRESS:Generation
[#1] INFO:ObjectHandling

0x7£8391624430 RooRealVar:: mu = 0 L(-1 - 10) "mu"

RooArgSet:: = (Nobs_SR,Nobs_CR)
RooArgSet:: = (mu)
RooArgSet:: = (B)

replacing previous snapshot with name Model(

RooProdPdf::model[ model_SR * model CR ] = 0.000529598

"mu"

RooProdPdf: :model[ model_SR * model CR ] = 0.000529598

Test Statistic on data: 1.37183
Profiling conditional MLEs for Null.
Using a ToyMCSampler. Now configuring for Null.

generated toys: 500 / 1000

Profiling conditional MLEs for Alt.
Using a ToyMCSampler. Now configuring for Alt.

generated toys: 500 / 1000
RooWorkspace: :saveSnaphot (w)

=== Using the following for ModelConfig ===

Observables: RooArgSet:: (Nobs_SR, Nobs_CR)
Parameters of Interest: RooArgSet:: = (mu)
Nuisance Parameters: RooArgSet:: = (B)
PDF:
Snapshot:
1) 0x7£839172¢c370 RooRealVar:: mu = 1.65517 L(-1 - 10)

Observables:
Parameters of Interest:
Nuisance Parameters:

Using the following for BonlyModel ===

RooArgSet:: = (Nobs_SR,Nobs_CR)
RooArgSet:: = (mu)
RooArgSet:: = (B)

replacing previous snapshot with name Model(

RooProdPdf: :model[ model_SR * model CR ] = 0.000287113

"mu"

PDF: RooProdPdf::model[ model_SR * model CR ] = 0.000287113
Snapshot:
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1) 0x7£839172c370 RooRealVar:: mu = 0 L(-1 — 10) "mu"
[#0] PROGRESS:Generation —-- Test Statistic on data: 1.96102
[#1] INFO:InputArguments —- Profiling conditional MLEs for Null.
[#1] INFO:InputArguments —-- Using a ToyMCSampler. Now configuring for Null.
[#0] PROGRESS:Generation —-- generated toys: 500 / 1000
[#1] INFO:InputArguments —-- Profiling conditional MLEs for Alt.
[#1] INFO:InputArguments —-- Using a ToyMCSampler. Now configuring for Alt.
[#0] PROGRESS:Generation —-- generated toys: 500 / 1000
[#1] INFO:ObjectHandling —-- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(

=== Using the following for ModelConfig ===

Observables: RooArgSet:: = (Nobs_SR,Nobs_CR)
Parameters of Interest: RooArgSet:: = (mu)
Nuisance Parameters: RooArgSet:: = (B)
PDF: RooProdPdf: :model[ model_ SR * model CR ] = 0.000143654
Snapshot:
1) 0x7£839172bdf0 RooRealVar:: mu = 1.86207 L(-1 - 10) "mu"

=== Using the following for BonlyModel ===

Observables: RooArgSet:: = (Nobs_SR,Nobs_CR)
Parameters of Interest: RooArgSet:: = (mu)
Nuisance Parameters: RooArgSet:: = (B)
PDF: RooProdPdf: :model[ model_SR * model CR ] = 0.000143654
Snapshot:
1) 0x7£839172bdf0 RooRealVar:: mu = 0 L(-1 - 10) "mu"
[#0] PROGRESS:Generation -- Test Statistic on data: 2.63018
[#1] INFO:InputArguments —-- Profiling conditional MLEs for Null.
[#1] INFO:InputArguments —-- Using a ToyMCSampler. Now configuring for Null.
[#0] PROGRESS:Generation —-- generated toys: 500 / 1000
[#1] INFO:InputArguments —- Profiling conditional MLEs for Alt.
[#1] INFO:InputArguments —-- Using a ToyMCSampler. Now configuring for Alt.
[#0] PROGRESS:Generation —-- generated toys: 500 / 1000
[#1] INFO:0ObjectHandling —-- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(

=== Using the following for ModelConfig ===

Observables: RooArgSet:: = (Nobs_SR,Nobs_CR)
Parameters of Interest: RooArgSet:: = (mu)
Nuisance Parameters: RooArgSet:: = (B)
PDF: RooProdPdf: :model[ model SR » model _CR ] = 6.68923e-05
Snapshot:
1) 0x7£8391624430 RooRealVar:: mu = 2.06897 L(-1 - 10) "mu"

=== Using the following for BonlyModel ===

Observables: RooArgSet:: = (Nobs_SR,Nobs_CR)
Parameters of Interest: RooArgSet:: = (mu)
Nuisance Parameters: RooArgSet:: = (B)
PDF: RooProdPdf: :model[ model_SR * model CR ] = 6.68923e-05
Snapshot:
1) 0x7£8391624430 RooRealVar:: mu = 0 L(-1 - 10) "mu"
[#0] PROGRESS:Generation —-- Test Statistic on data: 3.37135
[#1] INFO:InputArguments —-- Profiling conditional MLEs for Null.
[#1] INFO:InputArguments —- Using a ToyMCSampler. Now configuring for Null.
[#0] PROGRESS:Generation —- generated toys: 500 / 1000
[#1] INFO:InputArguments —-- Profiling conditional MLEs for Alt.
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[#1] INFO:InputArguments —-- Using a ToyMCSampler.
[#0] PROGRESS:Generation —- generated toys: 500 / 1000
[#1] INFO:0bjectHandling —-- RooWorkspace::saveSnaphot (w)
=== Using the following for ModelConfig ===
Observables: RooArgSet:: (Nobs_SR, Nobs_CR)
Parameters of Interest: RooArgSet:: = (mu)
Nuisance Parameters: RooArgSet:: = (B)
PDF':
Snapshot:

1) 0x7£839172c370 RooRealVar:: mu = 2.27586 L(-1 - 10)

=== Using the following for BonlyModel ===

Observables:
Parameters of Interest:
Nuisance Parameters:

PDF:
Snapshot:

1)
[#0] PROGRESS:Generation —-
[#1] INFO:InputArguments
[#1] INFO:InputArguments
[#0] PROGRESS:Generation
[#1] INFO:InputArguments
[#1] INFO:InputArguments
[#0] PROGRESS:Generation
[#1] INFO:ObjectHandling

Observables: RooArgSet:: (Nobs_SR, Nobs_CR)
Parameters of Interest: RooArgSet:: = (mu)
Nuisance Parameters: RooArgSet:: = (B)
PDF:
Snapshot:
1) 0x7£839172bdf0 RooRealVar:: mu = 2.48276 L(-1 - 10)

0x7£839172¢c370 RooRealVar:: mu = 0 L(-1 - 10) "mu"

RooArgSet:: (Nobs_SR, Nobs_CR)
RooArgSet:: = (mu)
RooArgSet:: = (B)

Now configuring for Alt.

replacing previous snapshot with name Model(

RooProdPdf::model[ model_SR * model CR ] = 2.91963e-05

"mu"

RooProdPdf: :model[ model SR x model CR ] = 2.91963e-05

Test Statistic on data: 4.17768
Profiling conditional MLEs for Null.
Using a ToyMCSampler. Now configuring for Null.

generated toys: 500 / 1000

Profiling conditional MLEs for Alt.
Using a ToyMCSampler. Now configuring for Alt.

generated toys: 500 / 1000
RooWorkspace: : saveSnaphot (w)

Using the following for ModelConfig ===

Using the following for BonlyModel ===

replacing previous snapshot with name Model(

RooProdPdf: :model[ model_SR * model CR ] = 1.20179%9e-05

"mu"

RooProdPdf: :model[ model_SR * model CR ] = 1.20179%9e-05

Using a ToyMCSampler. Now configuring for Null.

Observables: RooArgSet:: = (Nobs_SR,Nobs_CR)
Parameters of Interest: RooArgSet:: = (mu)
Nuisance Parameters: RooArgSet:: = (B)
PDF':
Snapshot:

1) 0x7£839172bdf0 RooRealVar:: mu = 0 L(-1 — 10) "mu"
[#0] PROGRESS:Generation —- Test Statistic on data: 5.04325
[#1] INFO:InputArguments Profiling conditional MLEs for Null.
[#1] INFO:InputArguments
[#0] PROGRESS:Generation generated toys: 500 / 1000
[#1] INFO:InputArguments Profiling conditional MLEs for Alt.
[#1] INFO:InputArguments Using a ToyMCSampler. Now configuring for Alt.
[#0] PROGRESS:Generation generated toys: 500 / 1000
[#1] INFO:ObjectHandling RooWorkspace: : saveSnaphot (w)

Observables:
Parameters of Interest:

Using the following for ModelConfig ===
RooArgSet:: = (Nobs_SR,Nobs_CR)
RooArgSet:: = (mu)

replacing previous snapshot with name Model(
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Nuisance Parameters:

RooArgSet:: =

(B)

PDF: RooProdPdf: :model[ model_SR * model CR ] = 4.69005e-06
Snapshot:
1) 0x7£8391624430 RooRealVar:: mu = 2.68966 L(-1 - 10) "mu"
=== Using the following for BonlyModel ===
Observables: RooArgSet:: = (Nobs_SR,Nobs_CR)
Parameters of Interest: RooArgSet:: = (mu)
Nuisance Parameters: RooArgSet:: = (B)

PDF:
Snapshot:

1) 0x7£8391624430 RooRealVar::
[#0] PROGRESS:Generation ——
[#1] INFO:InputArguments —-—
[#1] INFO:InputArguments —--—
[#0] PROGRESS:Generation ——
[#1] INFO:InputArguments -—-
[#1] INFO:InputArguments -—-—
[#0] PROGRESS:Generation ——
[#1] INFO:ObjectHandling —-

=== Using the following for

RooProdPdf: :model [

mu = 0 L(-1

Test Statistic on data:

Profiling conditional
Using a ToyMCSampler.
generated toys: 500 /
Profiling conditional
Using a ToyMCSampler.

generated toys: 500 /

RooWorkspace: :saveSnaphot (w)

ModelConfig

model_SR x model_CR ] =

- 10)

4.69005e-06

"mu"

5.96288

MLEs for Null.

Now configuring for Null.

1000

MLEs for Alt.

Now configuring for Alt.

1000

replacing previous snapshot with name Model(

Observables: RooArgSet:: (Nobs_SR, Nobs_CR)
Parameters of Interest: RooArgSet:: = (mu)
Nuisance Parameters: RooArgSet:: = (B)
PDF: RooProdPdf: :model[ model_SR * model CR ] = 1.7433e-06
Snapshot:
1) 0x7£839172c370 RooRealVar:: mu = 2.89655 L (-1 - 10) "mu"
=== Using the following for BonlyModel ===
Observables: RooArgSet:: (Nobs_SR, Nobs_CR)
Parameters of Interest: RooArgSet:: = (mu)
Nuisance Parameters: RooArgSet:: (B)
PDF: RooProdPdf: :model[ model_SR * model CR ] = 1.7433e-06
Snapshot:
1) 0x7£839172c370 RooRealVar:: mu = 0 L(-1 - 10) "mu"
[#0] PROGRESS:Generation —-- Test Statistic on data: 6.93201
[#1] INFO:InputArguments —- Profiling conditional MLEs for Null.
[#1] INFO:InputArguments —-- Using a ToyMCSampler. Now configuring for Null.
[#0] PROGRESS:Generation —-- generated toys: 500 / 1000
[#1] INFO:InputArguments —- Profiling conditional MLEs for Alt.
[#1] INFO:InputArguments —-- Using a ToyMCSampler. Now configuring for Alt.
[#0] PROGRESS:Generation —-- generated toys: 500 / 1000
[#1] INFO:0ObjectHandling —-- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(
=== Using the following for ModelConfig ===
Observables: RooArgSet:: (Nobs_SR, Nobs_CR)
Parameters of Interest: RooArgSet:: = (mu)
Nuisance Parameters: RooArgSet:: = (B)
PDF: RooProdPdf: :model [ model_ SR * model CR ] = 6.19679%9e-07
Snapshot:
1) 0x7£839172bdf0 RooRealVar:: mu = 3.10345 L(-1 - 10) "mu"
=== Using the following for BonlyModel ===
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Observables: RooArgSet:: (Nobs_SR, Nobs_CR)
Parameters of Interest: RooArgSet:: = (mu)
Nuisance Parameters: RooArgSet:: = (B)
PDF: RooProdPdf: :model[ model_SR * model CR ] = 6.19679%9e-07
Snapshot:
1) 0x7£839172bdf0 RooRealVar:: mu = 0 L(-1 - 10) "mu"
[#0] PROGRESS:Generation -- Test Statistic on data: 7.94662
[#1] INFO:InputArguments —-- Profiling conditional MLEs for Null.
[#1] INFO:InputArguments —-- Using a ToyMCSampler. Now configuring for Null.
[#0] PROGRESS:Generation —- generated toys: 500 / 1000
[#1] INFO:InputArguments —-- Profiling conditional MLEs for Alt.
[#1] INFO:InputArguments —-- Using a ToyMCSampler. Now configuring for Alt.
[#0] PROGRESS:Generation —- generated toys: 500 / 1000
[#1] INFO:0ObjectHandling —-- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(

=== Using the following for ModelConfig ===

Observables: RooArgSet:: = (Nobs_SR,Nobs_CR)
Parameters of Interest: RooArgSet:: = (mu)
Nuisance Parameters: RooArgSet:: = (B)
PDF: RooProdPdf: :model[ model SR x model _CR ] = 2.11399e-07
Snapshot:
1) 0x7£8391624430 RooRealVar:: mu = 3.31034 L(-1 - 10) "mu"

=== Using the following for BonlyModel ===

Observables: RooArgSet:: = (Nobs_SR,Nobs_CR)
Parameters of Interest: RooArgSet:: = (mu)
Nuisance Parameters: RooArgSet:: = (B)
PDF: RooProdPdf: :model[ model SR x model CR ] = 2.11399e-07
Snapshot:
1) 0x7£8391624430 RooRealVar:: mu = 0 L(-1 - 10) "mu"
[#0] PROGRESS:Generation —-- Test Statistic on data: 9.00319
[#1] INFO:InputArguments —-- Profiling conditional MLEs for Null.
[#1] INFO:InputArguments —- Using a ToyMCSampler. Now configuring for Null.
[#0] PROGRESS:Generation —-- generated toys: 500 / 1000
[#1] INFO:InputArguments —-- Profiling conditional MLEs for Alt.
[#1] INFO:InputArguments —-- Using a ToyMCSampler. Now configuring for Alt.
[#0] PROGRESS:Generation —-- generated toys: 500 / 1000
[#1] INFO:ObjectHandling —-- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(
=== Using the following for ModelConfig ===
Observables: RooArgSet:: = (Nobs_SR,Nobs_CR)
Parameters of Interest: RooArgSet:: = (mu)
Nuisance Parameters: RooArgSet:: = (B)
PDF: RooProdPdf: :model[ model_SR * model CR ] = 6.94294e-08
Snapshot:
1) 0x7£839172c370 RooRealVar:: mu = 3.51724 L(-1 - 10) "mu"
=== Using the following for BonlyModel ===
Observables: RooArgSet:: = (Nobs_SR,Nobs_CR)
Parameters of Interest: RooArgSet:: = (mu)
Nuisance Parameters: RooArgSet:: = (B)
PDF: RooProdPdf::model[ model_SR * model CR ] = 6.94294e-08
Snapshot:
1) 0x7£839172c370 RooRealVar:: mu = 0 L(-1 — 10) "mu"
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[#0] PROGRESS:Generation —-- Test Statistic on data: 10.0985
[#1] INFO:InputArguments —-- Profiling conditional MLEs for Null.
[#1] INFO:InputArguments —-- Using a ToyMCSampler. Now configuring for Null.
[#0] PROGRESS:Generation -- generated toys: 500 / 1000
[#1] INFO:InputArguments —-- Profiling conditional MLEs for Alt.
[#1] INFO:InputArguments —-- Using a ToyMCSampler. Now configuring for Alt.
[#0] PROGRESS:Generation —- generated toys: 500 / 1000
[#1] INFO:ObjectHandling —-- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(
=== Using the following for ModelConfig ===
Observables: RooArgSet:: (Nobs_SR, Nobs_CR)
Parameters of Interest: RooArgSet:: = (mu)
Nuisance Parameters: RooArgSet:: = (B)
PDF: RooProdPdf::model[ model_SR * model CR ] = 2.20143e-08
Snapshot:
1) 0x7£839172bdf0 RooRealVar:: mu = 3.72414 L(-1 - 10) "mu"
=== Using the following for BonlyModel ===
Observables: RooArgSet:: = (Nobs_SR,Nobs_CR)
Parameters of Interest: RooArgSet:: = (mu)
Nuisance Parameters: RooArgSet:: = (B)
PDF: RooProdPdf::model[ model_SR * model CR ] = 2.20143e-08
Snapshot:
1) 0x7£839172bdf0 RooRealVar:: mu = 0 L(-1 — 10) "mu"
[#0] PROGRESS:Generation —- Test Statistic on data: 11.2299
[#1] INFO:InputArguments —-- Profiling conditional MLEs for Null.
[#1] INFO:InputArguments —-- Using a ToyMCSampler. Now configuring for Null.
[#0] PROGRESS:Generation —-- generated toys: 500 / 1000
[#1] INFO:InputArguments —-- Profiling conditional MLEs for Alt.
[#1] INFO:InputArguments -- Using a ToyMCSampler. Now configuring for Alt.
[#0] PROGRESS:Generation —-- generated toys: 500 / 1000
[#1] INFO:ObjectHandling —-- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(
=== Using the following for ModelConfig ===
Observables: RooArgSet:: (Nobs_SR, Nobs_CR)
Parameters of Interest: RooArgSet:: = (mu)
Nuisance Parameters: RooArgSet:: = (B)
PDF: RooProdPdf::model[ model_SR * model CR ] = 6.75576e-09
Snapshot:
1) 0x7£8391624430 RooRealVar:: mu = 3.93103 L(-1 - 10) "mu"
=== Using the following for BonlyModel ===
Observables: RooArgSet:: = (Nobs_SR,Nobs_CR)
Parameters of Interest: RooArgSet:: = (mu)
Nuisance Parameters: RooArgSet:: = (B)
PDF: RooProdPdf::model[ model_SR * model CR ] = 6.75576e-09
Snapshot:
1) 0x7£8391624430 RooRealVar:: mu = 0 L(-1 — 10) "mu"
[#0] PROGRESS:Generation —-- Test Statistic on data: 12.3946
[#1] INFO:InputArguments —- Profiling conditional MLEs for Null.
[#1] INFO:InputArguments —-- Using a ToyMCSampler. Now configuring for Null.
[#0] PROGRESS:Generation —-- generated toys: 500 / 1000
[#1] INFO:InputArguments —- Profiling conditional MLEs for Alt.
[#1] INFO:InputArguments —-- Using a ToyMCSampler. Now configuring for Alt.
[#0] PROGRESS:Generation —-- generated toys: 500 / 1000
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[#1] INFO:ObjectHandling —-- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(
=== Using the following for ModelConfig ===
Observables: RooArgSet:: = (Nobs_SR,Nobs_CR)
Parameters of Interest: RooArgSet:: = (mu)
Nuisance Parameters: RooArgSet:: = (B)
PDF: RooProdPdf: :model[ model_SR * model CR ] = 2.01105e-09
Snapshot:
1) 0x7£839172c370 RooRealVar:: mu = 4.13793 L(-1 - 10) "mu"

Observables: RooArgSet:: =
Parameters of Interest: RooArgSet:: = (mu)
Nuisance Parameters: RooArgSet:: = (B)
PDF: RooProdPdf: :model |
Snapshot:

1) 0x7£839172c370 RooRealVar:: mu = 0 L(-1 - 10)
[#0] PROGRESS:Generation —-- Test Statistic on data:
[#1] INFO:InputArguments —- Profiling conditional
[#1] INFO:InputArguments —-- Using a ToyMCSampler.
[#0] PROGRESS:Generation —-- generated toys: 500 /
[#1] INFO:InputArguments —- Profiling conditional
[#1] INFO:InputArguments —-- Using a ToyMCSampler.
[#0] PROGRESS:Generation —-- generated toys: 500 /
[#1] INFO:ObjectHandling —- RooWorkspace::saveSnaphot (w)

Using the following for BonlyModel

=== Using the following for ModelConfig ===

Observables: RooArgSet:: = (
Parameters of Interest: RooArgSet:: = (mu)
Nuisance Parameters: RooArgSet:: (B)
PDF: RooProdPdf: :model |
Snapshot:

1) 0x7£83916049a0 RooRealVar:: mu = 4.34483

=== Using the following for BonlyModel ===

Observables: RooArgSet:: = (
Parameters of Interest: RooArgSet:: = (mu)
Nuisance Parameters: RooArgSet:: (B)
PDF: RooProdPdf: :model [
Snapshot:

1) 0x7£83916049a0 RooRealVar:: mu = 0 L(-1 - 10)
[#0] PROGRESS:Generation —-- Test Statistic on data:
[#1] INFO:InputArguments —-- Profiling conditional
[#1] INFO:InputArguments —-- Using a ToyMCSampler.
[#0] PROGRESS:Generation —-- generated toys: 500 /
[#1] INFO:InputArguments —-- Profiling conditional
[#1] INFO:InputArguments —-- Using a ToyMCSampler.
[#0] PROGRESS:Generation —-- generated toys: 500 /
[#1] INFO:ObjectHandling —- RooWorkspace::saveSnaphot (w)

=== Using the following for ModelConfig ===

model SR *= model_CR ] =

model_ SR x model_CR

L(-1 -

model SR * model_CR ] =

(Nobs_SR, Nobs_CR)

2.01105e-09

"mu"

13.5905

MLEs for Null.

Now configuring for Null.
1000

MLEs for Alt.

Now configuring for Alt.
1000

Nobs_SR, Nobs_CR)

] = 5.81873e-10

10) "mu"

Nobs_SR, Nobs_CR)

5.81873e-10
"mu"

14.8156

MLEs for Null.

Now configuring for Null.
1000

MLEs for Alt.

Now configuring for Alt.
1000

Observables: RooArgSet:: = (Nobs_SR,Nobs_CR)

Parameters of Interest: RooArgSet:: = (mu)

Nuisance Parameters: RooArgSet:: = (B)

PDF: RooProdPdf::model[ model_SR * model CR ] = 1.63939%9e-10
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Snapshot:
1) 0x7£8391b953d0 RooRealVar:: mu = 4.55172 L(-1 - 10) "mu"

=== Using the following for BonlyModel ===

Observables: RooArgSet:: (Nobs_SR, Nobs_CR)
Parameters of Interest: RooArgSet:: = (mu)
Nuisance Parameters: RooArgSet:: = (B)
PDF': RooProdPdf::model[ model_SR * model CR ] = 1.63939%9e-10
Snapshot:
1) 0x7£8391b953d0 RooRealVar:: mu = 0 L(-1 - 10) "mu"
[#0] PROGRESS:Generation —-- Test Statistic on data: 16.0679
[#1] INFO:InputArguments —-- Profiling conditional MLEs for Null.
[#1] INFO:InputArguments —-- Using a ToyMCSampler. Now configuring for Null.
[#0] PROGRESS:Generation -—- generated toys: 500 / 1000
[#1] INFO:InputArguments —-- Profiling conditional MLEs for Alt.
[#1] INFO:InputArguments —-- Using a ToyMCSampler. Now configuring for Alt.
[#0] PROGRESS:Generation —- generated toys: 500 / 1000
[#1] INFO:ObjectHandling —-- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(

=== Using the following for ModelConfig ===
Observables: RooArgSet:: (Nobs_SR, Nobs_CR)
Parameters of Interest: RooArgSet:: = (mu)
Nuisance Parameters: RooArgSet:: = (B)
PDF: RooProdPdf: :model[ model_SR * model CR ] = 4.5050%9e-11
Snapshot:
1) 0x7£839172c370 RooRealVar:: mu = 4.75862 L(-1 - 10) "mu"

=== Using the following for BonlyModel ===
Observables: RooArgSet:: = (Nobs_SR,Nobs_CR)
Parameters of Interest: RooArgSet:: = (mu)
Nuisance Parameters: RooArgSet:: = (B)
PDF: RooProdPdf: :model[ model_SR * model CR ] = 4.5050%9e-11
Snapshot:
1) 0x7£839172c370 RooRealVar:: mu = 0 L(-1 - 10) "mu"

PROGRESS:Generation ——- Test Statistic on data: 17.3457

INFO:InputArguments -- Profiling conditional MLEs for Null.

INFO:InputArguments —-- Using a ToyMCSampler. Now configuring for Null.

PROGRESS:Generation -—- generated toys: 500 / 1000

INFO:InputArguments —-- Profiling conditional MLEs for Alt.

INFO:InputArguments —-- Using a ToyMCSampler. Now configuring for Alt.

PROGRESS:Generation -—- generated toys: 500 / 1000

INFO:0ObjectHandling —-—- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(

=== Using the following for ModelConfig ===

Observables: RooArgSet:: = (Nobs_SR,Nobs_CR)
Parameters of Interest: RooArgSet:: = (mu)
Nuisance Parameters: RooArgSet:: = (B)
PDF: RooProdPdf::model[ model_SR * model CR ] = 1.20933e-11
Snapshot:
1) 0x7£8391624430 RooRealVar:: mu = 4.96552 L(-1 - 10) "mu"
=== Using the following for BonlyModel ===
Observables: RooArgSet:: = (Nobs_SR,Nobs_CR)
Parameters of Interest: RooArgSet:: = (mu)
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Nuisance Parameters: RooArgSet:: = (B)
PDF: RooProdPdf: :model[ model_SR * model CR ] = 1.20933e-11
Snapshot:
1) 0x7£8391624430 RooRealVar:: mu = 0 L(-1 — 10) "mu"
[#0] PROGRESS:Generation —-- Test Statistic on data: 18.6475
[#1] INFO:InputArguments —-- Profiling conditional MLEs for Null.
[#1] INFO:InputArguments —-- Using a ToyMCSampler. Now configuring for Null.
[#0] PROGRESS:Generation —-- generated toys: 500 / 1000
[#1] INFO:InputArguments —-- Profiling conditional MLEs for Alt.
[#1] INFO:InputArguments —-- Using a ToyMCSampler. Now configuring for Alt.
[#0] PROGRESS:Generation —-- generated toys: 500 / 1000
[#1] INFO:ObjectHandling —- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(

=== Using the following for ModelConfig

Observables:
Parameters of Interest:
Nuisance Parameters:

PDF:
Snapshot:
1) 0x7£8391b953d0 RooRealVar::

RooArgSet:: (
RooArgSet:: = (mu)
RooArgSet:: = (B)
RooProdPdf: :model [

mu = 5.17241

=== Using the following for BonlyModel ===

Observables: RooArgSet::
Parameters of Interest: RooArgSet:: = (mu)
Nuisance Parameters: RooArgSet:: (B)
PDF: RooProdPdf: :model [
Snapshot:

1) 0x7£8391b953d0 RooRealVar:: mu = 0 L(-1 - 10)
[#0] PROGRESS:Generation ——- Test Statistic on data:
[#1] INFO:InputArguments —- Profiling conditional
[#1] INFO:InputArguments —-- Using a ToyMCSampler.
[#0] PROGRESS:Generation —-- generated toys: 500 /
[#1] INFO:InputArguments —- Profiling conditional
[#1] INFO:InputArguments —-- Using a ToyMCSampler.
[#0] PROGRESS:Generation —-- generated toys: 500 /
[#1] INFO:ObjectHandling —- RooWorkspace::saveSnaphot (w)

=== Using the following for ModelConfig ===

model SR x model CR ] =

L(-1 -

model_ SR x model CR ] =

Nobs_ SR, Nobs_CR)

3.17544e-12

10) "mu"

(Nobs_SR, Nobs_CR)

3.17544e-12

"mu"

19.9717

MLEs for Null.

Now configuring for Null.
1000

MLEs for Alt.

Now configuring for Alt.
1000

Observables: RooArgSet:: (Nobs_SR, Nobs_CR)
Parameters of Interest: RooArgSet:: = (mu)
Nuisance Parameters: RooArgSet:: = (B)
PDF: RooProdPdf: :model[ model SR * model CR ] = 8.1663e-13
Snapshot:
1) 0x7£839172c370 RooRealVar:: mu = 5.37931 L(-1 - 10) "mu"
=== Using the following for BonlyModel ===
Observables: RooArgSet:: (Nobs_SR, Nobs_CR)
Parameters of Interest: RooArgSet:: = (mu)
Nuisance Parameters: RooArgSet:: = (B)
PDF: RooProdPdf: :model[ model_ SR * model CR ] = 8.1663e-13
Snapshot:
1) 0x7£839172c370 RooRealVar:: mu = 0 L(-1 - 10) "mu"
[#0] PROGRESS:Generation —-- Test Statistic on data: 21.3168
[#1] INFO:InputArguments —-- Profiling conditional MLEs for Null.
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Using a ToyMCSampler.
generated toys:
Profiling conditional
Using a ToyMCSampler.
generated toys:
RooWorkspace: : saveSnaphot (w)

500 /

500 /

(
(mu)
(B)
model [

[#1] INFO:InputArguments —-—
[#0] PROGRESS:Generation —-—
[#1] INFO:InputArguments --—
[#1] INFO:InputArguments —-—
[#0] PROGRESS:Generation —-—
[#1] INFO:0bjectHandling --—
=== Using the following for ModelConfig ===
Observables: RooArgSet::
Parameters of Interest: RooArgSet::
Nuisance Parameters: RooArgSet::
PDF': RooProdPdf::
Snapshot:

1) 0x7£8391624430 RooRealVar:: mu =

=== Using the following for BonlyModel

Observables: RooArgSet::
Parameters of Interest: RooArgSet::
Nuisance Parameters: RooArgSet::
PDF': RooProdPdf::
Snapshot:

1) 0x7£8391624430 RooRealVar:: mu =
[#0] PROGRESS:Generation —--—
[#1] INFO:InputArguments —-—
[#1] INFO:InputArguments --—
[#0] PROGRESS:Generation —--—
[#1] INFO:InputArguments —-—
[#1] INFO:InputArguments —--—
[#0] PROGRESS:Generation —--—
[#1] INFO:ObjectHandling —-—

Using the following for ModelConfig

generated toys:
Profiling conditional
Using a ToyMCSampler.
generated toys:
RooWorkspace: : saveSnaphot (w)

5.58621

(B)
model [

0 L(-1

Test Statistic on data:
Profiling conditional
Using a ToyMCSampler.

500 /

500 /

model_SR x model_CR ]

L(-1

model SR x model_CR ]

- 10)

Now configuring for Null.

1000

MLEs for Alt.

Now configuring for Alt.

1000

replacing previous snapshot with name Model(

Nobs_SR, Nobs_CR)

2.05924e-13

10) "

2.05924e-13

"mu"

22.6812

MLEs for Null.

Now configuring for Null.

1000

MLEs for Alt.

Now configuring for Alt.

1000

replacing previous snapshot with name Model(

Observables: RooArgSet:: = (Nobs_SR,Nobs_CR)
Parameters of Interest: RooArgSet:: = (mu)
Nuisance Parameters: RooArgSet:: = (B)
PDF: RooProdPdf: :model[ model_SR * model CR ] = 5.09696e-14
Snapshot:
1) 0x7£8391b953d0 RooRealVar:: mu = 5.7931 L(-1 - 10) "mu"
=== Using the following for BonlyModel ===
Observables: RooArgSet:: = (Nobs_SR,Nobs_CR)
Parameters of Interest: RooArgSet:: = (mu)
Nuisance Parameters: RooArgSet:: = (B)
PDF: RooProdPdf::model[ model_SR * model CR ] = 5.09696e-14
Snapshot:
1) 0x7£8391b953d0 RooRealVar:: mu = 0 L(-1 — 10) "mu"
[#0] PROGRESS:Generation —- Test Statistic on data: 24.0632
[#1] INFO:InputArguments —-- Profiling conditional MLEs for Null.
[#1] INFO:InputArguments —-- Using a ToyMCSampler. Now configuring for Null.
[#0] PROGRESS:Generation -- generated toys: 500 / 1000
[#1] INFO:InputArguments —-- Profiling conditional MLEs for Alt.
[#1] INFO:InputArguments —-- Using a ToyMCSampler. Now configuring for Alt.
[#0] PROGRESS:Generation -- generated toys: 500 / 1000
[#1] INFO:ObjectHandling —-- RooWorkspace::saveSnaphot (w) replacing previous snapshot with name Model(
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=== Using the following for ModelConfig ===

Observables: RooArgSet:: (Nobs_SR,Nobs_CR)
Parameters of Interest: RooArgSet:: = (mu)
Nuisance Parameters: RooArgSet:: = (B)

PDF: RooProdPdf: :model[ model_SR * model CR ] = 1.23954e-14
Snapshot:
1) 0x7£839172¢c370 RooRealVar:: mu = 6 L(-1 — 10) "mu"

=== Using the following for BonlyModel ===

Observables: RooArgSet:: (Nobs_SR,Nobs_CR)
Parameters of Interest: RooArgSet:: = (mu)
Nuisance Parameters: RooArgSet:: = (B)
PDF: RooProdPdf::model[ model_SR * model CR ] = 1.23954e-14
Snapshot:
1) 0x7£839172c370 RooRealVar:: mu = 0 L(-1 — 10) "mu"
[#0] PROGRESS:Generation —— Test Statistic on data: 25.4606
[#1] INFO:InputArguments —-- Profiling conditional MLEs for Null.
[#1] INFO:InputArguments —-- Using a ToyMCSampler. Now configuring for Null.
[#0] PROGRESS:Generation —-- generated toys: 500 / 1000
[#1] INFO:InputArguments —-- Profiling conditional MLEs for Alt.
[#1] INFO:InputArguments -- Using a ToyMCSampler. Now configuring for Alt.
[#0] PROGRESS:Generation —-- generated toys: 500 / 1000
Print observed limit
In [17]: cout << 100xinverter.Confidencelevel() << "% upper limit " << result->UpperLimit () << enc
90% wupper limit 1.29286

compute expected limit

In [18]: std::cout << "Expected upper limits, using the B (alternate) model : " << std::endl;
std::cout << " expected limit (median) " << result->GetExpectedUpperLimit (0) << std::endl;
std::cout << " expected limit (-1 sig) " << result->GetExpectedUpperLimit (-1) << std::endl;
std::cout << " expected limit (+1 sig) " << result->GetExpectedUpperLimit (1) << std::endl;
std::cout << " expected limit (-2 sig) " << result->GetExpectedUpperLimit (-2) << std::endl;
std::cout << " expected limit (+2 sig) " << result->GetExpectedUpperLimit (2) << std::endl;

Expected upper limits, using the B (alternate) model

expected limit (median) 0.869595
expected limit (-1 sig) 0.640249
expected limit (+1 sig) 1.27409
expected limit (-2 sig) 0.534798
expected limit (+2 sig) 1.79995

Use the visualization tool of the PLC to show how the interval was calculated

In [19]: TCanvas* cl = new TCanvas();
RooStats: :HypoTestInverterPlot* plot = new RooStats::HypoTestInverterPlot ("HTI_Result_Plot",
plot->Draw ("CLb 2CL"); // plot also CLb and CLs+b
cl->Draw ()
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HypoTest Scan Result

—J— Observed Cls
----- # Observed CLs+b
—&§— Observed CLb
------- Expected CLs - Median
[ ExpectedCLs = 1o
[ ] ExpectedClst2¢a

p value

0.8

0.6

0.4

0.2

mu

Improvements Needed/Planned

An improved procedure for the 1,20 bands for limits based on the asymptotic formulae have been investi-
gated~cite{ AsymptoticBands}. The key issue there is that o2, the variance of 1, depends on y, which is a second-order
effect, while the original formulation assumed constant o2. The improved procedure was described and used for sev-
eral Higgs results, but the corresponding code has not yet been ported into the ROOT codebase. This is a work package
for the Statistics Forum.

Various improvements and feature requests are also work packages for the statistics forum. This includes improved
robustness, improved scanning algorithms, and requests for streamlined, user-friendly interfaces to these underlying
tools.

4.1.3 Background-only p-values for Searches

In the case of searches, we are interested in calculating a background-only p-value. Typically we start with the sta-
tistical model f(data|u, o), where p is proportional to the signal cross-section (e.g. a signal yield or signal strength)
and « are the nuisance parameters. The appropriate test statistic g (as defined in Ref.~cite{Cowan:2010js}), with
increasing values indicating more events than expected in the background-only hypothesis, is implemented with
ProfileLikelihoodRatioTestStat. The background-only p-value, denoted pg, can be calculated using toy
Monte Carlo with RooStats FrequentistCalculator or by using the asymptotic formulae with the RooStats
AsymptoticCalculator. The subtleties associated to the treatment of global observables and nuisance parame-
ters described above in the upper-limit section also apply here.
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4.1.4 Measurements and Confidence Intervals / Parameter Contours

The extended recommendations in Ref.~cite { ExtendedRecommendations}. are aimed at measurement problems (68 %
and 95% confidence intervals in a single parameter or multiple parameters with or without physical boundaries). The
document is a natural extension on the search/upper-limit recommendations. The primary difference is to change the
test statistic to ¢,, (as defined in Ref.~cite{Cowan:2010js}), whcihis appropriate for measurements instead of 1-sided
tests. This test statistic is also implemented with the RooStats ProfileLikelihoodRatioTestStat. Asabove,
the p-values can be calculated either with asymptotic or toy Monte Carlo; however, there are improvements needed
and planned in this case.

Improvements Needed/Planned

The HypoTestInverter currently only supports 1-d problems. The NeymanConstruction and FeldmanCousins
classes support N-D problems (with boundaries), but is not as configurable as the HypoTest Inverter class. The
planning in RooStats is to unify these tools. Note, the RooStats FrequentistCalculator can calculate p-
values using toy Monte Carlo and the recommended treatment of global observables and nuisance parameters even in
multi-dimensional cases with complex boundaries — the missing part is not the p-value calculation, but the scan over
the parameter space and the actual hypothesis test inversion. Efficient scanning becomes increasingly important for
multidimensional problems.

The HypoTestInverter can also be configured to use the AsymptoticCalculator to calculate p-values
more quickly. The AsymptoticCalculator only has the 1-d case with a lower-boundary implemented. The 1-d
case with upper- and lower-boundaries has been worked out~cite{ Cowan:2012se} and should be implemented as well.

For multi-dimensional problems, p-value based on toy MC can become quite time consuming. In many cases the
asymptotic approach is sufficiently accurate and much faster. The presence of boundaries modifies the asymptotic
distributions; however, in general this depends on the shape of the boundary which means there will be no general for-
mulae. It is possible that one can find a formulae for the asymptotic distribution for simple boundaries (e.g. or pi1 > 0,
e > 0, or g > 0&&ps > 0). Neglecting these modifications to the boundary leads to over-coverage and some
protection to the sensitivity problem near the boundary similar to CLs, thus the current recommendations are to use the
uncorrected 2 distribution and make this clear in the text of the paper. Thus, the tools needed for the asymptotic proce-
dure for this non-calibrated procedure are already in place with RooStats ProfileLikelihoodRatioTestStat
and the standard x2 cutoffs for 68% and 95% confidence intervals (and have been used in recent Higgs property pa-
pers).

Diagnostics are important for all statistical methods, particularly for complicated problems. There are a number tools
that have been developed that are in use by the physics groups, but these need to migrated into the common code bases
(either ROOT or the appropriate ATLAS distribution).

4.2 Bayesian

4.2.1 Methodology

The Bayesian approach has been used for a number of ATLAS results, primarily for upper-limits on a signal cross-
section. The Bayesian approach needs two key pieces of information: the likelihood L(u, ) and the prior 7(u, @),
where 1 denotes the parameter(s) of interest and «v denotes the nuisance parameters.

As mentioned in Section~ref{S:modeling}, if one has a full statistical model f(data|u, ), then one evaluates the
likelihood via L(u, ) = f(observed data|u, ). It is possible that one defines a likelihood function L(u, «) without
providing the ability to generate pseudo data, but this is approach rules out the ability to compare to or provide
complementary analysis with frequentist methods.
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4.2.2 Prior

The prior 7(u, ) must also be specified for Bayesian methods. There are several approaches to specifying the prior
ranging from a fully subjective “’prior belief” to priors derived from formal rules. Often the prior is factorized as
m(u, ) = mw(u)w(a). While priors may be informed by previous measurements, there is always some trace of an
original prior, as described below. Recall that a change of variables influences the prior. In particular, the change of
variables from p — v(u) introduces a Jacobian factor for the prior 7(p) — 7(v) = m(u)/|dv/dp|. This implies that a
statement like “’uniform prior” is meaningless unless you say that is uniform with respect to some particular variable.
This is relevant for situations in which the signal rate is a function of some theoretical parameters — like the energy
scale A for a contact interaction. The choice of “’flat” prior in s, A, A2, etc. are not equivalent.

The prior for the nuisance parameters is often dealt with in way that is closely connected to frequentist approach. In
particular, there is often some auxiliary measurement described by the statistical model f(a|a), where a is the data
associated to that auxiliary measurement used to measure/constrain . Often the statistical model for these auxiliary
measurements are adequately approximated by a Gaussian or Poisson. The corresponding prior used for the main
measurement can be seen as the posterior from the auxiliary measurement. In particular, it is given by Bayes’ theorem
with () x f(ala)n(a), where n(«) is some original prior (sometimes called the ‘’ur-prior” in reference to the
German “’ur-*") from before both the main measurement and the auxiliary measurement. Most commonly, the 7(«)
is taken to be uniform in o — which is mainly irrelevant when the parameter has small relative uncertainty after
the auxiliary measurement — in which case 7(a) x f(a|a). Table~ref{tab:constraints} provides a few common and
consistent relationships between the auxiliary measurement, the ur-prior , and the resulting posterior from the auxiliary
measurement (which is used as prior for the main measurement).

In cases like theoretical uncertainties, there may be no auxiliary measurement for the parameter «. In the Bayesian
approach, one can directly start with an assumed 7(«), while the constraint term used in the frequentist approach is
typically introduced artificially following Table~ref{tab:constraints} backwards (i.e. w(«) — f(a|a), ).

The prior for the parameter of interest is more delicate as it directly impacts the inference on u. As mentioned
above, for situations in which the signal rate is a function of some theoretical parameters like the energy scale A for
a contact interaction, then the choice of “’flat” prior in s, A, or A2 will lead to different answers. The discussion of
which prior to use is beyond the scope of this document, but the most common choice is to use a uniform prior for
the signal yield. While not a justification, it is an important to know that 1-sided Bayesian upper-limits using this
prior agree with the 1-sided CLs upper-limits in almost all problems that have been investigated, even complex Higgs
combinations~cite{ ATLAS:2011gia}.

The other priors that have been advocated are Jeffreys’s prior~cite{Jeffreys} and the Reference
prior~cite{ Demortier:2010sn,Casadei:2011hx}, which are both the result of a formal procedure based on the
full statistical model f(data|u, ) (another reason it is good to describe the full statistical model, not just the
likelihood). These priors have nice invariance properties to reparametrization (e.g. s(A) — A) and strive to be
‘non-informative’ in a precise sense. Unfortunately, both priors are difficult to calculate except in rather simple
problems. For example, the reference prior has been calculated for the common number counting problem

f(na ml:uv a) =SR (n|M + a) CR(n|Ta) )

where 7 is a fixed extrapolation factor. Note, the reference prior for the number counting experiment is implemented
in BAT.

4.2.3 Sampling and Marginalization Tools

The key object of Bayesian analysis is the posterior distribution, which is proportional to the product of the likelihood
L(p, «) and the prior 7(u, o). When interested in inference on the parameter of interest u the Bayesian approach is
to marginalize (integrate) over the nuisance parameters «.. These integrals can be difficult and are typically performed
with numerical algorithms that produce a large sample of {u, o} that is proportional to the posterior. The primary
algorithms for this sampling are the Markov Chain Monte Carlo (Metropolis-Hastings or Gibbs sampling) and Nested
Sampling. The two primary tools that implement these algorithms are the BAT toolkit~cite{BAT} and RooStats,
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and there is interoperability between these two tools~cite{roobat}. BAT provides MCMC sampling for likelihoods
implemented in both BAT’s modeling language or RooFit modeling language. RooStats can use either it’s internal
texttt{ MCMCCalculator}, the interface to BAT’s MCMC algorithm, or the nested sampling algorithm implemented in
MultiNest~cite{ Feroz:2008xx }.

Improvements Needed/Planned

The interface between BAT/RooFit interfaces should be maintained and well tested for complicated examples. The
RooStats tool for numerically evaluating the Jeffreys prior for an arbitrary RooFit model cite{RooJeffreys} should be
further developed and documented (as this can be used by both RooStats and BAT). Diagnostics of various sorts are
available, but can always be improved.

4.3 Good Practices

4.3.1 Modeling systematics

* Uncerstanding constrained NPs - associated tool - ranking plots [ PLL, Exo, Slides ]

4.3.2 Recommendations for measurements

(as opposed to limits)

4.3.3 Bayesian misc

* marginalisation tools etc, choice of prior, sampling techniques etc [ Kyles notes? ]

4.3.4 Tables of systematics

* how to do this, conceptual issues with NP correlations between reported groups [ Exo, Slides, PLL ]

4.4 Diagnostic Tools

Understanding fit failures etc

4.5 Blinding

4.5.1 expected vs observed
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CHAPTER B

Analysis-Ready Examples

5.1 RooFit Example with H — ~~

In [1]: import ROOT

Welcome to JupyROOT 6.12/06

5.1.1 Open MonteCarlo files

These files were generated using Madgraph5_aMC@NLO showered with Pythia8 and simulated with Delphes.

This sounds very complicated but with a nominal setup of mg5 from here, taking a moment to run install
pythia8 and install Delphes, and running the following commands will produce similar events.

import model heft

generate p p > h, h > a a
output Hgg_RUN

launch Hgg_RUN

generate pp > aa / h
output HggBackground_RUN
launch HggBackground_RUN

To further simplify matters however the resulting root files are slimmed of most of their branches (Taus, FatJets etc)
such that the few branches that remain don’t need any additional classes to read. Additional information can be found
here

In [2]: sig_file = ROOT.TFile.Open ("HggSignal.root™)
signal_tree = sig_file.Get ("Tree")
bkg_file = ROOT.TFile.Open ("HggBackground.root™)
background_tree = bkg_file.Get ("Tree")

In [3]: lumi = 25000
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5.1.2 Define Histograms

In [4]: mgg = ROOT.THLF ("mgg","di photon mass",60,100,160)
mgg_background = ROOT.THI1F ("mgg_background", "background di photon mass", 60,100, 160)

5.1.3 Define an Event Selection

for each tree we assert that there must be at least two photons, no leptons and the scalar sum of objects in the region
must be larger than 100 GeV

further more we assert that the highest pr photon has at least 40 GeV of transverse energy and the next highest 30
GeV.

The isolation variable shows how far the energy clusters of the photon candidate are distributed about the mean.

In [5]: def apply_cuts(tree, histogram) :
for event in tree:
if event.n_photons >1 and event.n_leptons < 1 and event.ht > 100.:
lead = ROOT.TLorentzVector (event.gamma_lead_pt,event.gamma_lead_eta,event.gamma_!
sublead = ROOT.TLorentzVector (event.gamma_sublead_pt, event.gamma_sublead_eta, ever
di_photon = lead + sublead
if lead.Pt()> 40 and sublead.Pt ()>30 and event.lead_isolation < 0.04 and event. s
histogram.Fill (abs (di_photon.M()),event.weight+lumi)
return histogram

In [6]: mgg = apply_cuts(signal_tree, mgg)
cl = ROOT.TCanvas ()
mgg.Draw ()
cl.Draw ()
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As can be seen, the application of cuts convolutes the shape of the distribution and the number of events produced by

the MonteCarlo can have a large effect on the overall uncertainty

In [7]: mgg_background = apply_cuts (background_tree, mgg_background)
cl = ROOT.TCanvas ()
mgg_background.Draw ()
fitResultPtr = mgg_background.Fit ("expo","S")

cl.Draw ()
FCN=80.7299 FROM MIGRAD STATUS=CONVERGED 54 CALLS 55 TOTAL
EDM=6.1278e-07 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO.  NAME VALUE ERROR SIZE DERIVATIVE
1 Constant 9.13245e+00 5.70895e-02 3.35087e-05 1.35559%9e-01
2 Slope -2.40656e-02 4.59901e-04 2.70027e-07 1.57861e+01
background di photon mass
mgg_background
N Entries 26856
800 Mean 123
- Std Dev 16.42
700 %
600 —
500 —
400
300
200—
|
100
5.1.4 Validate the background shape
In the above stage we assert that the background distribution form a exponential distribution.
We now validate (by eye) that the binning and distribution are sufficient for our needs.
In this case we scale the signal histogram by 5 to make it more visible.
In [8]: ROOT.gStyle.SetOptStat (0)
mgg.SetFillColor (2)
mgg.SetStats (0)
mgg.Scale (5)
mgg_background. SetFillColor (4)
mgg_background. SetStats (0)
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5.

leg = ROOT.TLegend(0.5,0.6,0.9,0.9)

leg.AddEntry (mgg, "{:.2f} Higgs Signal Events".format (mgg.Integral()))
leg.AddEntry (mgg_background, "{:.2f} Background Events".format (mgg_background.Integral()))
stack = ROOT.THStack ()

stack.Add (mgg_background)

stack.Add (mgg)

stack.Draw ("HIST")

mgg_background.Draw ("same")

leg.Draw ()

stack.GetXaxis () .SetTitle ("Mass (GeV)")
stack.GetYaxis () .SetTitle ("Events per GeV")

cl.Draw ()

80O
800.23 Higgs Signal Events

700

Events per GeV

600 26588.60 Background Events

500

400

300

200

100

150 160

Mass (GeV)

1.5 Prepare Workspace

First we convert the histograms into histogram pdf objects.

Our range is the Mass range plotted above.

In [9]: x = ROOT.RooRealVar ("x","x",100,160)
1 = ROOT.RooArgList (x)
RooFit v3.60 —— Developed by Wouter Verkerke and David Kirkby
Copyright (C) 2000-2013 NIKHEF, University of California & Stanford University
All rights reserved, please read http://roofit.sourceforge.net/license.txt
In [10]: signalhist = ROOT.RooDataHist ("sighist", "sighist", 1, mgg)
sigpdf = ROOT.RooHistPdf ("sigpdf","sigpdf",ROOT.RooArgSet (x),signalhist,0)
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bkghist = ROOT.RooDataHist ("bkghist", "bkghist", 1, mgg_background)
bkgpdf = ROOT.RooHistPdf ("bkgpdf", "bkgpdf",ROOT.RooArgSet (x),bkghist, 0)

[#1] INFO:DataHandling —-- RooDataHist::adjustBinning(sighist): fit range of variable x expanded to ne
[#1] INFO:DataHandling —-- RooDataHist::adjustBinning (bkghist): fit range of variable x expanded to ne

5.1.6 Create a composite model signal+background (gauss+bkg)

In [11]: mean = ROOT.RooRealVar ("mean", "Mean of Gaussian",120,100,160)
sigma = ROOT.RooRealVar ("sigma","Width of Gaussian",5,0,10)
hgammagamma = ROOT.RooGaussian ("Hgammagamma", "Gaussian with mean", x,mean, sigma)

In [12]: hgammagamma.fitTo(signalhist,ROOT.RooFit.Range (100,160),RO0OT.RooFit.PrintLevel (1))

Out [12]: <ROOT.RooFitResult object at O0x(nil)>

[#0] WARNING:InputArguments —-- RooAbsPdf::fitTo (Hgammagamma) WARNING: a likelihood fit is request of
While the estimated values of the parameters will always be calculated taking the weights intc¢
there are multiple ways to estimate the errors on these parameter values. You are advised to 1

explicit choice on the error calculation:

— Either provide SumW2Error (kTRUE), to calculate a sum-of-weights corrected HESSE error m:

(error will be proportional to the number of events)

- Or provide SumW2Error (kFALSE), to return errors from original HESSE error matrix

(which will be proportional to the sum of the weights)
If you want the errors to reflect the information contained in the provided dataset,

choose k-

If you want the errors to reflect the precision you would be able to obtain with an unweightec

with 'sum-of-weights' events, choose kFALSE.

[#1] INFO:Eval —-- RooRealVar::setRange (x) new range named 'fit' created with bounds [100,160]

[#1] INFO:Fitting —-- RooAbsOptTestStatistic::ctor (nll_Hgammagamma_sighist) constructing test statist:
[#1] INFO:Eval -- RooRealVar::setRange (x) new range named 'NormalizationRangeForfit' created with bon
[#1] INFO:Eval —-- RooRealVar::setRange (x) new range named 'fit_nll_Hgammagamma_sighist' created with
[#1] INFO:Fitting —-- RooAbsOptTestStatistic::ctor (nll_Hgammagamma_sighist) fixing interpretation of
[#1] INFO:Minization -- RooMinimizer::optimizeConst: activating const optimization

[#1] INFO:Minization -- RooMinimizer::optimizeConst: deactivating const optimization

In [13]: ¢ = ROOT.TCanvas ()
plot = x.frame (ROOT.RooFit.Title("Signal Mass"))
plot.SetTitle("")
plot.GetYaxis () .SetTitleOffset (1.)
plot.GetYaxis () .SetTitleSize (0.05)
plot.GetXaxis () .SetTitleSize (0.05)
plot.GetXaxis () .SetTitleOffset (.6)
plot.SetXTitle (r"$m_{\gamma\gamma}$ (GeV)")
signalhist.plotOn (plot, ROOT.RooFit .Name ("data"))
hgammagamma.plotOn (plot, ROOT.RooFit.Name ("hgg"))

1 = ROOT.TLegend( 0.5, 0.6, 0.9, 0.9)
dataobj = plot.findObject ("data")
hobj = plot.findObject ("hgg")

1.AddEntry( dataobj , "MC Data", "pl" )

1.AddEntry( hobj , "{0:0.0f}GeV Higgs mass ".format (mean.getvVal()), "1" )
1.SetTextSizePixels (400)

plot.Draw()

1.Draw ()

c.Draw ()
[#1] INFO:InputArguments —- RooAbsData::plotOn(sighist) INFO: dataset has non-integer weights, auto-:
[#1] INFO:Plotting —-- RooAbsPdf::plotOn (Hgammagamma) p.d.f was fitted in range and no explicit plot,:

5.1. RooFit Example with H — ~~ 155



RooStatsWorkbook Documentation

[#1]
[#1]

Events /(1)

INFO:Plotting ——- RooAbsPdf::plotOn (Hgammagamma) only plotting range 'fit_nll_ Hgammagamma_sighist
INFO:Plotting ——- RooAbsPdf::plotOn (Hgammagamma) p.d.f. curve is normalized using explicit choics

45 —e— MC Data

40

35 —— 124GeV Higgs mass

30
25
20

15

1D+*

PIJU 110 120 130 140 150| 60
(Ge

and repeat for Background-

In [14]: lamb = ROOT.RooRealVar ("lambda", "Decay rate of exponential",-1,-2,0)

nonhiggs = ROOT.RooExponential ("ztautau", "Exponential",x,lamb)

In [15]: nonhiggs.fitTo (bkghist, ROOT.RooFit.Range (100,160),RO0T.RooFit.PrintLevel (-1))

Out [15]: <ROOT.RooFitResult object at O0x(nil)>

[#0]

[#1
[#1
[#1
[#1
[#1

WARNING: InputArguments ——- RooAbsPdf::fitTo(ztautau) WARNING: a likelihood fit is request of wha
While the estimated values of the parameters will always be calculated taking the weights intc¢
there are multiple ways to estimate the errors on these parameter values. You are advised to 1
explicit choice on the error calculation:

— Either provide SumW2Error (kTRUE), to calculate a sum-of-weights corrected HESSE error m:
(error will be proportional to the number of events)
— Or provide SumW2Error (kFALSE), to return errors from original HESSE error matrix
(which will be proportional to the sum of the weights)
If you want the errors to reflect the information contained in the provided dataset, choose Kk
If you want the errors to reflect the precision you would be able to obtain with an unweightec
with 'sum-of-weights' events, choose kFALSE.

INFO:Fitting —-—- RooAbsOptTestStatistic::ctor(nll_ztautau_bkghist) constructing test statistic £«

INFO:Eval —-- RooRealVar::setRange (x) new range named 'fit_nll_ ztautau_bkghist' created with bou

INFO:Fitting —— RooAbsOptTestStatistic::ctor(nll_ztautau_bkghist) fixing interpretation of coef:

INFO:Minization —-- RooMinimizer::optimizeConst: activating const optimization

INFO:Minization —-- RooMinimizer::optimizeConst: deactivating const optimization
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In

[16]: c =

plot

plot.
plot.
plot.

ROOT.TCanvas ()
= x.frame (ROOT.RooFit.Title ("Background Mass"))

GetYaxis (
GetYaxis (
.GetXaxis (

SetTitle("")

.SetTitleOffset (1.)
.SetTitleSize (0.05)
.SetTitleSize (0.05)

plot

plot.GetXaxis () .SetTitleOffset (.6)
plot.SetXTitle (r"Sm_{\gamma\gamma}$ (GeV)")
bkghist.plotOn (plot, ROOT.RooFit .Name ("data"))
nonhiggs.plotOn (plot, ROOT.RooFit.Name ("QCD"))

1l = ROOT.TLegend( 0.5, 0.6, 0.9, O.
dataobj = plot.findObject ("data™)
bobj = plot.findObject ("QCD")

9)

1.AddEntry( dataobj , "MC Data", "pl" )
1.AddEntry( bobj , "Background mass distribution",
1.SetTextSizePixels (400)

plot.Draw()

1.Draw ()

c.Draw ()

nyw )

[#1
[#1
[#1
[#1

INFO:InputArguments —-—- RooAbsData::plotOn (bkghist)
INFO:Plotting ——- RooAbsPdf::plotOn(ztautau)
INFO:Plotting ——- RooAbsPdf::plotOn(ztautau)
INFO:Plotting —— RooAbsPdf::plotOn(ztautau)

INFO: dataset has non-integer weights, auto-:
p.d.f was fitted in range and no explicit plot,norm
only plotting range 'fit_nll_ ztautau_bkghist'

p.d.f. curve is normalized using explicit choice of
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700

Events /(1)

Background mass distribution
600

500
400
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5.1.7 and combine into a single model

In [17]: fsig = ROOT.RooRealVar ("fsig","signal fraction",0.02,0.,1.)

model = ROOT.RooAddPdf ("model", "model",ROOT.RooArgList (hgammagamma, nonhiggs), ROOT.RooArgLi st

In [18]: ¢l = ROOT.TCanvas ()

xframe = x.frame (ROOT.RooFit.Title ("Composite Model™))

model .plotOn (xframe)
bkg_component = ROOT.RooArgSet (nonhiggs)

model .plotOn (xframe, ROOT.RooFit.Components (bkg_component), ROOT.RooFit.LineStyle (2),RO0OT.Rool

xframe.Draw ()

cl.Draw ()
[#1] INFO:Plotting —-- RooAbsPdf::plotOn(model) directly selected PDF components:
[#1] INFO:Plotting —-- RooAbsPdf::plotOn(model) indirectly selected PDF components:

Composite Model

o —
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2 0.018p
ks -
§ 0.016—
S -
S 0.014—
o -
0.012—
0.01—
0.008—
0.006—
0.004[—
0.002—
L 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 | 1
PDO 110 120 130 140 150 160
X
5.1.8 and now import all the models into the workspace
In [19]: w = ROOT.RooWorkspace ("w")
getattr (w, "import ') (sigpdf)
getattr (w, 'import ") (bkgpdf)
getattr(w, 'import') (model)
Out[19]: False
[#1] INFO:0bjectHandling —-- RooWorkspace::import (w) importing dataset sighist
[#1] INFO:0bjectHandling —-- RooWorkspace::import (w) importing RooHistPdf::sigpdf
[#1] INFO:ObjectHandling —-- RooWorkspace::import (w) importing RooRealVar::x
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[#1]
[#1]
[#1]
[#1]
[#1]
[#1]
[#1]
[#1]
[#1]

INFO

INFO:
INFO:
INFO:
INFO:

INFO

INFO:
INFO:
INFO:

:ObjectHandling —-- RooWorkspace::import (w) importing dataset bkghist
ObjectHandling —-- RooWorkspace: :import (w) importing RooHistPdf::bkgpdf
ObjectHandling -- RooWorkspace: :import (w) importing RooAddPdf::model
ObjectHandling —-- RooWorkspace::import (w) importing RooGaussian::Hgammagamma
ObjectHandling —-- RooWorkspace::import (w) importing RooRealVar::mean
:ObjectHandling —-- RooWorkspace: :import (w) importing RooRealVar::sigma
ObjectHandling —-- RooWorkspace: :import (w) importing RooRealVar::fsig
ObjectHandling —-- RooWorkspace: :import (w) importing RooExponential::ztautau
ObjectHandling -- RooWorkspace: :import (w) importing RooRealVar::lambda

5.1.9 generating data from model

In [20]: datamodel = ROOT.RooAddPdf ("datamodel", "datamodel",ROOT.RooArgList (sigpdf,bkgpdf), ROOT.ROOA:
data = datamodel.generate (ROOT.RooArgSet (x),10000)
In [21]: cl = ROOT.TCanvas/()
xframe = x.frame (ROOT.RooFit.Title ("Composite Model™))
data.plotOn (xframe)
model.plotOn (xframe)
bkg_component = ROOT.RooArgSet (nonhiggs)
model.plotOn (xframe, ROOT.RooFit.Components (bkg_component),ROOT.RooFit.LineStyle (2),RO0OT.Rool
xframe.Draw ()
cl.Draw ()
[#1] INFO:Plotting —-- RooAbsPdf::plotOn(model) directly selected PDF components: (ztautau)
[#1] INFO:Plotting —-- RooAbsPdf::plotOn(model) indirectly selected PDF components: ()
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In [22]:

out[22]:

getattr (w, '"import') (data)

False
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[#1] INFO:0ObjectHandling -- RooWorkspace::import (w) importing dataset wu

5.1.10 Set the Model Configuration and Save

In [23]: mc = ROOT.RooStats.ModelConfig("ModelConfig",w)
mc.SetPdf (model)
mc.SetParametersOfInterest (ROOT.RooArgSet (w.var ("fsig")))
mc.SetObservables (ROOT.RooArgSet (w.var ("x")))
getattr (w, 'import') (mc)

Out [23]: False
In [24]: w.writeToFile ("HgammagammaWsS.root", True)

Out[24]: False

5.2 HistFactory Example with H — 4/

5.2.1 Read Data and Optimise Analysis
5.2.2 Prepare Workspace

5.2.3 Statistical Tests

5.3 HistFitter Analysis

5.3.1 Read Data and Prepare Regions
5.3.2 Configure HistFitter

5.3.3 Statistical Tests
5.4 Combine Harvester (CMS)
5.4.1 Read Data and Optimise Analysis

5.4.2 Prepare Data Card

5.4.3 Statistical Tests
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For CERN users

The following button should direct you to the CERN swan service, a folder should be checked out containing a series

. . o Open i
of notebooks containing all the tools and implementations referenced in this document. f=oI é SWAN
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https://cern.ch/swanserver/cgi-bin/go/?projurl=https://github.com/roofit-dev/RooStatsWorkbook.git
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